Skip to main content

Tetrorchidium didymostemon leaf extract reduces Plasmodium berghei induced oxidative stress and hepatic injury in Swiss albino mice


Oxidative stress, already implicated in malaria infection has been identified as one of the major contributors to the pathophysiology of malaria. This study was aimed at evaluating the effects of methanol extracts of Tetrorchidium didymostemon leaf and stem bark on Plasmodium berghei induced oxidative stress in the liver, spleen and brain of mice. P. berghei-infected mice were sacrificed on day 5 of the experiment after four days of consecutive administration of T. didymostemon extracts (250 and 500 mg/kg body weight). Thereafter, biochemical analysis and histopathological examination were carried out. The leaf extract had a significantly higher (P < 0.05) ability to reduce parasite induced alterations of antioxidant enzyme activities compared with the stem bark extract. Malondialdehyde level was significantly higher (P < 0.05) while glutathione peroxidase and catalase activities were lower in the negative control (infected mice, without treatment) relative to the treated groups. The leaf extract at 500 mg/kg body weight had a higher ability to ameliorate changes in oxidative stress and reduce hepatic injury induced by P. berghei in comparison with the other doses. The leaf extract (500 mg/kg) was able to reduce significantly hepatomegaly induced by P. berghei. Similarly, histopathological observation of the organs (liver and spleen) shows relative reversal of the cellular and morphological alteration induced by P. berghei infection following leaf extract administration. Our study suggests that treatment of P. berghei infected mice with T. didymostemon leaf extract during early infection reduces oxidative stress by preventing lipid peroxidation and normalizing glutathione peroxidase and catalase activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

Data and materials used in this study are available.

Code availability

Not applicable.


  • Adekunle AS, Adekunle OC, Egbewale BE (2007) Serum status of selected biochemical parameters in malaria: an animal model. Biomed Res 18:109–113

    Google Scholar 

  • Adisa RA, Sulaimon LA (2017) Assessment of liver antioxidant status and mitochondrial membrane composition of Plasmodium berghei—infected mice treated with selected antimalarials. Acta Biochim Pol 64(3):485–491

    CAS  PubMed  Article  Google Scholar 

  • Andy SK, Goodman RN (1972) A Polyphenol oxidase and peroxidase in apple leaf inoculated with virulent or an avirulent strain for Ervinia amylovora. Ind Phytopath 25:575–579

    Google Scholar 

  • Atamna H, Ginsburg H (1993) Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 61:231–234

    CAS  PubMed  Article  Google Scholar 

  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 34:163–189

    CAS  PubMed  Article  Google Scholar 

  • Bruce-Chwatt LJ (1978) Essential malariology, 2nd edn. William Heinemann Medical Books Ltd, London, pp 72–78

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  PubMed  Article  Google Scholar 

  • Burkill HM (2004) The useful plants of West Tropical Africa, vol 2, 2nd edn. Royal Botanic Gardens, Kew, Richmond, United Kingdom, Families E-I, p 636

    Google Scholar 

  • Burtis C, Ashwood E, Border B (2001) Liver functions: In: Tietz Fundamentals of clinical chemistry: 5th Edn. Saunders Company. pp 748–770

  • Chaves LF, Taleo G, Kalkoa M, Kaneko A (2011) Spleen rates in children: an old and new surveillance tool for malaria elimination initiatives in island settings. Trans R Soc Trop Med Hyg 105:226–231

    PubMed  Article  Google Scholar 

  • Chawla LS, Sidhu G, Sabharwal BD, Bhatia KL, Sood A (1989) Jaundice in Plasmodium falciparum. J Assoc Phys India 37:390–391

    CAS  Google Scholar 

  • Cohen D, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Annals Biochem 34:30–38

    CAS  Article  Google Scholar 

  • Das BS, Patnaik JK, Mohanty S, Mishra SK, Mohanty D, Satpathy SK, Bose TK (1993) Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am J Trop Med Hyg 49:720–725

    CAS  PubMed  Article  Google Scholar 

  • del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG (2012) The role of the spleen in malaria. Cell Microbiol 14(3):343–355

    PubMed  Article  CAS  Google Scholar 

  • Demetrious JA, Drewes PA, Gin JB (1974) Clinical chemistry: principles and technics, 2nd edn. Harper & Row, Hagerstown (MD), p 927

    Google Scholar 

  • Dey S, Guha M, Alam A, Goyal M, Bindu S, Pal C et al (2009) Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med 46:271–281

    CAS  PubMed  Article  Google Scholar 

  • Ebohon O, Irabor F, Omoregie ES (2020) Sub-acute toxicity study of methanol extract of Tetrorchidium didymostemon leaves using biochemical analyses and gene expression in Wistar rats. Heliyon 6(6):1–9. e04313

  • Engwerda CR, Beattie L, Amante FH (2005) The importance of the spleen in malaria. Trends Parasitol 21:75–80

    PubMed  Article  Google Scholar 

  • Etim EO, Ekaidem IS, Akpan EJ, Uson IF, Akpan HD (2009) Effects of quinine treatment on some indices of protein metabolism in Plasmodium falciparum infected human subjects. Acta Pharm Sci 51:21–26

    CAS  Google Scholar 

  • Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U (2006) Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J 20:339–449

    Google Scholar 

  • Haque A, Best SE, Amante FH, Ammerdorffer A, de Labastida F, Pereira T (2011) High parasite burdens cause liver damage in mice following Plasmodium berghei ANKA infection independently of CD8+ T cell-mediated immune pathology. Infect Immun 79(5):1882–1888

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ibiam UA, Ekpono EU, Aja PM, Ugwu OPC, Elekwa E, Umoru G (2017) Effect of ethanol root extract of Sphenocentrum jollyanum on liver function indices in Plasmodium berghei infected mice. IDOSR J Sci Technol 2:40–56

    Google Scholar 

  • Jendrassik L, Grof P (1938) Estimation of total serum bilirubin level spectrophotometrically in serum and plasma. Biochem Zeitschrift 297:81–89

    CAS  Google Scholar 

  • Jarike AE, Emuveyon EE, Idogun SF (2002) Pitfalls in the interpretation of liver parenchyma; and membranous enzyme results in the Nigeria environment. Nig Clin Med 10:21–27

    Google Scholar 

  • La Celle PL (1970) Alteration of membrane deformability in haemolytic anemias. Seminars Hemat 7:355

    Google Scholar 

  • Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V et al (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332:1399–1404

    CAS  PubMed  Article  Google Scholar 

  • Momoh J, Longe AO, Campbell CA (2014) In vivo anti-plasmodial and in vitro antioxidant activity of ethanolic leaf extract of Alstonia boonie (ewe ahun) and its effect on some biochemical parameters in swiss albino mice infected with Plasmodium berghei NK 65. Eur Sci J 10:68–82

    Google Scholar 

  • Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15–31

    CAS  PubMed  Article  Google Scholar 

  • Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalve ACM, Laurindo PSOC (2012) Oxidative stress in malaria. Int J Mol Sci 13:16346–16372

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Peters WM (1967) Rational methods in the search for antimalarial drugs. Trans R Soc Trop Med Hyg 61:400–410

    Article  Google Scholar 

  • Reitman S, Frankel S (1957) Colorimetric GOT and GPT determination. Am J Clin Pathol 28:56–63

    CAS  PubMed  Article  Google Scholar 

  • Renner EL (1995) Liver function test. Balliere J Clin Gastroenterol 9:661–772

    CAS  Article  Google Scholar 

  • Riccio EK, Junior IN, Riccio LR, das Gracas AM, Corte-Real S, Morgado M (2003) Malaria associated apoptosis is not significantly correlated with either parasitemia or the number of previous malaria attacks. Parasitol Res 90:9–18

    PubMed  Article  Google Scholar 

  • Rupani AB, Amarapurkar AD (2009) Hepatic changes in fatal malaria: an emerging problem. Ann Trop Med Parasitol 103:119–127

    CAS  PubMed  Article  Google Scholar 

  • Sibmooh N, Pipitaporn B, Wilairatana P, Dangdoungjai J, Udomsangpetch R, Looareesuwan S (2000) Effect of artemisinin on lipid peroxidation and fluidity of the erythrocyte membrane in malaria. Biol Pharm Bull 23:1275–1280

    CAS  PubMed  Article  Google Scholar 

  • Sohail M, Kaul A, Raziuddin M, Adak T (2007) Decreased glutathione-S-transferase activity: diagnostic and protective role in vivax malaria. Clin Biochem 40:377–382

    CAS  PubMed  Article  Google Scholar 

  • Soniran OT, Idowu OA, Ajayi OL, Olubi IC (2012) Comparative study on the effects of chloroquine and artesunate on histopathological damages caused by Plasmodium berghei in four vital organs of infected albino mice. Malar Res Treatment 1–8

  • Sowjanya M, Kumar KK, Sunita K (2013) Assessment of biochemical variations and splenomegaly during falciparum malaria in mice model. The Bioscan 8:925–929

    CAS  Google Scholar 

  • Srivastava A, Khanduri A, Lakhtakia S, Pandey R, Choudhuri G (1996) Falciparum malaria with acute liver failure. Trop Gastroenterol 17:172–174

    CAS  PubMed  Google Scholar 

  • Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H (2011) Phytochemical screening and extraction: a review. Int Pharm Sci 1(1):98–106

    Google Scholar 

  • Toirambe B (2008) Tetrorchidium didymostemon (Baill.) Pax & K.Hoffm. [Internet] Record from PROTA4U. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. Accessed 25 September 2017

  • Tucci SA (2010) Phytochemicals in the control of human appetite and body weight. Pharm (Basel) 3(3):748–763

    CAS  Article  Google Scholar 

  • Vanderberg JP, Frevert U (2004) Intravitalmicroscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int J Parasitol 34:991–996

    PubMed  Article  Google Scholar 

  • Viriyavejakul P, Khachonsaksumet V, Punsawad C (2014) Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malar J 13:1–9

    Article  CAS  Google Scholar 

  • White NJ, Ho M (1992) The pathophysiology of malaria. Adv Parasitol 31:84–167

    Google Scholar 

  • Whitten R, Milner DA, Yeh MM, Kamiza S, Molyneux ME, Taylor TE (2011) Liver pathology in Malawian children with fatal encephalopathy. Hum Pathol 42:1230–1239

    PubMed  PubMed Central  Article  Google Scholar 

  • World malaria report 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Accessed 12 December 2019

  • Yokoto USC, Calisei T (2006) Malaria parasite and their relationships with their host. Malaria Res 44:265–273

    Google Scholar 

Download references


The authors wish to acknowledge the members of Malaria Research, Molecular Biology and Toxicology Unit of the Department of Biochemistry, University of Benin for their immense contributions.


The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations



Conceptualization: [OE], [FI], [ESO]; Methodology: [OE], [FI], [MEA]; Formal analysis and investigation: [OE], [FI], [MEA]; Writing—original draft preparation: [OE]; Writing—review and editing: [ESO]; Resources: [OE], [FI], [MEA], [ESO]; Supervision: [ESO].

Corresponding author

Correspondence to Osamudiamen Ebohon.

Ethics declarations

Ethical approval

Ethical approval for this study was granted by the Institutional Ethics Review Committee, University of Benin (No: LS19114).

Conflict of interest

Osamudiamen Ebohon has no conflict of interest. Francis Irabor has no conflict of interest. Merit Esewi Ayevbuomwan has no conflict of interest. Ehimwenma Sheena Omoregie has no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

The manuscript was written through contributions of all authors. All authors approved the submission of this manuscript for publication in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebohon, O., Irabor, F., Ayevbuomwan, M.E. et al. Tetrorchidium didymostemon leaf extract reduces Plasmodium berghei induced oxidative stress and hepatic injury in Swiss albino mice. ADV TRADIT MED (ADTM) 22, 347–358 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Tetrorchidium didymostemon
  • Malaria
  • Histopathology
  • Splenomegaly
  • Antioxidant enzymes
  • Hepatic function