Skip to main content

Advertisement

Log in

Gallic acid protects against neurochemical alterations in transgenic Drosophila model of Alzheimer’s disease

  • Research Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

This study evaluated the effect of gallic acid on some selected biomarkers in Drosophila melanogaster model of Alzheimer’s disease (AD). Transgenic D. melanogaster expressing human amyloid precursor protein and β-secretase (BACE 1) genes were used as AD flies while wild type (Oregon strain) flies served as the normal control flies. Both fly strains were exposed to gallic acid in their diet. Thereafter, the flies were sacrificed and homogenized. The homogenates were assayed for reactive oxygen species (ROS), malondialdehyde (MDA) and total thiol contents, as well as the activity of catalase. Also the activity of cholinesterases (ChEs) and β-secretase (BACE-1) were quantified. Results showed that the AD flies had significantly higher ChEs and BACE-1 activity, ROS and MDA contents, as well as lower total thiol level and catalase activity compared to the normal control flies. However, these biochemical impairments in AD control flies were significantly ameliorated in AD flies treated with gallic acid. Therefore, this study has shown that gallic acid could ameliorate elevated ChEs and BACE-1 activities, as well as oxidative stress induced by β-amyloid generation in D. melanogaster model of AD. This therefore, suggests gallic acid as a promising nutraceutical for the management of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

BChE:

Butyryllcholinesterase

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

BACE-1:

β-Secretase

DCF:

2′,7′-Dichloroflourescein

DEPPD:

N,N-Diethyl-para-phenylenediamine

DL-BAPNA:

N-α-Benzoyl-d,l-arginine p-nitroanilide

DMSO:

Dimethyl sulfoxide

RONS:

Reactive oxygen/nitrogen species

References

  • Abe I, Seki T, Noguchi H (2000) Potent and selective inhibition of squaleneepoxidase by synthetic gallic esters. Biochem Biophys Res Commun 270:137–140

    CAS  PubMed  Google Scholar 

  • Abolaji OA, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, Loreto EL, Rocha JBT (2014) Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med 71:99–108

    PubMed  Google Scholar 

  • Abolaji AO, Olaiya CO, Oluwadahunsi JO, Farombi EO (2017) Dietary consumption of monosodium l-glutamate induces adaptive response and reduction in the life span of Drosophila melanogaster. Cell Biochem Funct. https://doi.org/10.1002/cbf.3259

    Article  PubMed  Google Scholar 

  • Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529

    CAS  PubMed  Google Scholar 

  • Adedara IA, Abolaji AO, Rocha JBT, Farombi EO (2016) Diphenyl diselenide protects against mortality, locomotor deficits and oxidative stress in Drosophila melanogastermodel of manganese-induced neurotoxicity. Neurochem Res. https://doi.org/10.1007/s11064-016-1852-x

    Article  PubMed  Google Scholar 

  • Adefegha SA (2018) Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J Diet Suppl 15(6):977–1009

    PubMed  Google Scholar 

  • Akinrinde AS, Adebiyi OE (2019) Neuroprotection by Luteolin and Gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats. Neurotoxicology 74:252–263

    CAS  PubMed  Google Scholar 

  • Ban JY, Nguyen HTT, Lee HJ, Cho SO, Ju HS, Kim JY et al (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25–35)-induced toxicity in cultured rat cortical neurons. Biol Pharmaceut Bull 31(1):149–153

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Utreja S et al (2011) Characterization of a Drosophila Alzheimer’s disease model: pharmacological rescue of cognitive defects. PLoS ONE 6(6):e20799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda S, Dave R (2009) In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr J Microb Res 3(13):981–996

    Google Scholar 

  • Citron M (2004) β-Secretase inhibition for the treatment of Alzheimer’s disease–promise and challenge. Trends Pharmacol Sci 25(2):92–97

    CAS  PubMed  Google Scholar 

  • Denise G, Lucas SM, Juliana V, Clóvis P, Gabriela S, Solange CG (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim Nova 32(1):169–174

    Google Scholar 

  • Dwibedy P, Dey GR, Naik DB, Kishore K, Moorthy PN (1999) Pulseradiolysis studies on redox reaction of gallic acid: one electron oxidation of gallic acid by hallic acid OH adduct. Phys Chem 1:1915–1918

    CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Gillham B, Papachristodoulou DK, Thomas JH (1997) Will’s: biochemical basis of medicine, 3rd edn. Butterworth-Heinemann, Oxford, p 1997

    Google Scholar 

  • Gotz J, Chen F, Barmettler R, Nitsch RM (2001) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534

    CAS  PubMed  Google Scholar 

  • Gramza A, Korczak J, Amarowicz R (2005) Tea polyphenols—their antioxidant properties and biological activity—a review. Pol J Food Nutr Sci 14/55:219–235

    Google Scholar 

  • Gul K, Singh AK, Jabeen R (2016) Nutraceuticals and functional foods: the foods for the future world. Crit Rev Food Sci Nutr 56(16):2617–2627

    CAS  PubMed  Google Scholar 

  • Hanninen O, Alessio HM, Packer L, Sen CK (eds) (2000) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam

    Google Scholar 

  • Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T (2007) High through put spectrophotometric assay of reactive oxygen species in serum. Mutat Res 631:5561

    Google Scholar 

  • Heemels MT (2016) Neurodegenerative diseases. Nature 539:179

    PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  • Hu W, Gray NW, Brimijoin S (2003) Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation. J Neurochem 86(2):470–478

    CAS  PubMed  Google Scholar 

  • Iijima-Ando K, Iijima K (2010) Transgenric Dosophila models of Alzheimer’s disease and tauopathies. Brain Struct Funct 214(2–3):245–262

    CAS  PubMed  Google Scholar 

  • Jayamani J, Shanmugam G (2014) Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur J Med Chem 85:352–358

    CAS  PubMed  Google Scholar 

  • Karamaæ M, Kosiñska A, Pegg RB (2005) Comparison of radical-scavenging activities of selected phenolic acids. Pol J Food Nutr Sci 14(55):165–170

    Google Scholar 

  • Katja P, Aaron V, Jörg BS (2013) Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 8:35

    Google Scholar 

  • Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ et al (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 55(12):1798–1808

    CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    CAS  PubMed  Google Scholar 

  • Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA (2013) Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett 23(23):6336–6340

    CAS  PubMed  Google Scholar 

  • Locatelli C, Filippin MFB, Creczynski PTB (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur J Med Chem 60:233–239

    CAS  PubMed  Google Scholar 

  • Luo L, Tully T, White K (1992) Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 9:595–605

    CAS  PubMed  Google Scholar 

  • Mancini F, Naldi M, Cavrini V, Andrisano V (2007) Multiwellfluorometric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors. Anal Bioanal Chem 388(5–6):1175–1183

    CAS  PubMed  Google Scholar 

  • Marchasson IB, Beauvieux MCD, Peuchant E, Harston SR, Decamps A, Reignier B, Emeriau JP, Rainfray M (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30:235

    Google Scholar 

  • Maya S, Prakash T, Goli D (2018) Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: relevance to sporadic amyotrophic lateral sclerosis. Eur J Pharmacol 835:41–51

    CAS  PubMed  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45(1):117–127

    CAS  PubMed  Google Scholar 

  • Mhatre SD, Satyasi V, Killen M, Paddock BE, Moir RD, Saunders AJ, Marenda DR (2014a) Synaptic abnormalities in a Drosophila model of Alzheimer’s disease. Dis Models Mech 7(3):373–385

    Google Scholar 

  • Mhatre SD, Michelson SJ, Gomes J, Tabb LP, Saunders AJ, Marenda DR (2014b) Development and characterization of an aged onset model of Alzheimer’s disease in Drosophila melanogaster. Exp Neurol 261:772–781

    CAS  PubMed  Google Scholar 

  • Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N et al (2012) Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287(9):6912–6927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2013) Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for protection against scopolamine-induced amnesia. Drug Delivery 20(3–4):112–119

    CAS  PubMed  Google Scholar 

  • Oboh G, Ogunsuyi OB, Ojelade MT, Akomolafe SF (2018) Effect of dietary inclusions of bitter kola seed on geotactic behavior and oxidative stress markers in Drosophila melanogaster. Food Sci Nutr 6(8):2177–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohakawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Google Scholar 

  • Pérez-Severiano F, Santamaría A, Pedraza-Chaverri J, Medina-Campos ON, Ríos C, Segovia J (2004) Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29(4):729–733

    PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  PubMed  Google Scholar 

  • Rose K, Wan C, Thomas A, Seeram NP, Ma H (2018) Phenolic compounds isolated and identified from amla (Phyllanthus emblica) juice powder and their antioxidant and neuroprotective activities. Nat Product Commun 13(10):1309–1311. https://doi.org/10.1177/1934578X1801301019

    Article  Google Scholar 

  • Saeki K, You A, Isemura M, Abe I, Seki T et al (2000) Apoptosis inducing activity of lipid derivatives of gallic acid. Biol Pharm Bull 23:1391–1394

    CAS  PubMed  Google Scholar 

  • Sakaguchi N, Inoue M, Ogihara Y (1998) Reactive oxygen species and intracellular Ca2+, common signals for apoptosis induced by gallic acid. Biochem Pharmacol 55:1973–1981

    CAS  PubMed  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8(7):721–738

    CAS  PubMed  Google Scholar 

  • Sberna G, Sáez-Valero J, Li QX, Czech C, Beyreuther K, Masters CL, McLean CA, Small DH (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the β-amyloid protein precursor of Alzheimer’s disease. J Neurochem 71(2):723–731

    CAS  PubMed  Google Scholar 

  • Serge P, Miquel V, Vernice J (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111:3–10

    Google Scholar 

  • Shina AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Google Scholar 

  • Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    CAS  PubMed  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-likenpathology. Proc Natl Acad Sci USA 94:13287–13292

    CAS  PubMed  Google Scholar 

  • Teixeira A, Baenas N, Dominguez-Perles R, Barros A, Rosa E, Moreno DA, Garcia Viguera C (2014) Natural bioactive compounds from winery by products as health promoters: a review. Int J Mol Sci 15:15638–15678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 4:38

    PubMed  PubMed Central  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative Stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassar R (2004) Bace 1. J Mol Neurosci 23(1–2):105–113

    CAS  PubMed  Google Scholar 

  • Winderickx J, Delay C, de Vos A, Klinger H, Pellens K, Vanhelmont T, van Leuven F, Zabrocki P (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395

    CAS  PubMed  Google Scholar 

  • Xie Q, Wang H, Xia Z, Lu M, Zhang W, Wang X, Fu W, Tang Y, Sheng W, Li W, Zhou W (2008) Bis-(−)-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-β aggregation. J Med Chem 51(7):2027–2036

    CAS  PubMed  Google Scholar 

  • Yadav M, Jindal DK, Dhingra MS, Kumar A, Parle M, Dhingra S (2018) Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations. Inflammopharmacology 26(2):413–424

    CAS  PubMed  Google Scholar 

  • Yan R, Vassar R (2014) Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3):319–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youn K, Jun M (2012) Inhibitory effects of key compounds isolated from Corni fructus on BACE1 activity. Phytother Res 26(11):1714–1718

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate Dr. Daniel R. Marenda of the Department of Biology, University of Drexel, Philadelphia, USA for the generous gift of the transgenic Alzheimer’s disease flies used for this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyu Oboh.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Opeyemi B. Ogunsuyi has no conflict of interest. Ganiyu Oboh has no conflict of interest. Odunayo O. Oluokun has no conflict of interest. Adedayo O. Ademiluyi has no conflict of interest. Omodesola O. Ogunruku has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunsuyi, O.B., Oboh, G., Oluokun, O.O. et al. Gallic acid protects against neurochemical alterations in transgenic Drosophila model of Alzheimer’s disease. ADV TRADIT MED (ADTM) 20, 89–98 (2020). https://doi.org/10.1007/s13596-019-00393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-019-00393-x

Keywords

Navigation