An up-to-date review on chemistry and biological activities of Senna occidentalis (L.) Link Family: Leguminosae

  • Harpreet SinghEmail author
  • Piyush Chahal
  • Amrita Mishra
  • Arun Kumar Mishra


Senna occidentalis (L.) Link Family: Leguminosae, one of the important Ayurvedic plants, to treat various ailments. The current review embarks on the detected secondary metabolites, biological properties and toxicological aspects of extracts of S. occidentalis (L.) Link. With an aim to encourage the recent and advanced research on extracts, the present review is presented. The traditional medicinal importance of S. occidentalis (L.) Link has been identified in tropical and subtropical regions to treat various ailments. All the available informations on S. occidentalis (L.) Link was collected via electronic search (using Pubmed, SciFinder, Scirus, Google Scholar, Agricola and Web of Science) and literature study done at library. About 38 phytocompounds have been isolated from S. occidentalis (L.) Link; the most important includes anthraquinones, flavonoid glycosides, xanthones, tetrahydro anthracenes, terpenes and phytosterol etc. In vivo biological studies of the extracts show that S. occidentalis (L.) Link possesses analgesic, anthelmintic, antidiabetic, anticonvulsant, antitrypanosomal, antioxidant, hepatoprotective, myeloprotective, wound healing, anticancer, anti-inflammatory and larvicidal activity. The extracts need to be further investigated to describe the extent of the biological effects, most advantageous dosage required, and mechanisms of action behind biological effects, safety profile and probable side effects. Moreover, clinical studies are required to support the curative potential of S. occidentalis (L.) Link.


Secondary metabolites Senna occidentalis (L.) Link Phytocompounds 



Ethanol extract


Benzene extract


Hexane extract


Ethyl acetate extract


Methanol extract


Aqueous extract






Body weight








Minimum: inhibitory concentration




Nitric oxide


Hydrogen peroxide


Thiobarbituric acid reactive substances






Parts per million






Organisation for economic co-operation and development


Aqueous ethanolic extract


Methanolic chloroform extract


Hydro-alcoholic extract


Petroleum ether extract


Benzene extract


Chloroform extract


n-Butanol extract




Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Harpreet Singh has no conflict of interest. Piyush Chahal has no conflict of interest. Amrita Mishra has no conflict of interest. Arun Kumar Mishra has no conflict of interest.


  1. Abdel KM, Adil AM, Abd Elrazig EH, Kamal E, Inas O (2014) Characterization and some biological activity of a flavonol isolated from Senna occidentalis leaves. J Appl Ind Sci 2(6):250–254Google Scholar
  2. Abu-Darwish SM, Ateyyat AM (2008) The pharmacological and pesticidal actions of naturally occurring 1,8-dihydroxyanthraquinones derivatives. World J Agric Sci 4(4):495–505Google Scholar
  3. Adoum OA (2008) Determination of toxicity effects of some savannah plants using brine shrimp test (BST). Int J Pure Appl Sci 2:1–5Google Scholar
  4. Aja PM, Okechukwu PCU, Kennedy K, Ibere JB, Ekpono EU (2017) Phytochemical analysis of Senna occidentalis leaves. IDOSR J Appl Sci 2(1):75–91Google Scholar
  5. Amponsah IK, Mensah AY, Ampofo EK, Bekoe SO, Sarpong FM, Jibira Y (2016) Pharmacognostic studies of the leaves and seeds of Cassia occidentalis (Linn.) (Leguminosae). J Pharm Phytochem 5(3):250–255Google Scholar
  6. Aragao TP, Lyra MMA, Silva MGB, Andrade BA, Ferreira PA, Ortega LF, da Silva JC, Fraga MC, Wanderley AG, Lafayette SS (2009) Toxicological reproductive study of Cassia occidentalis L. in female Wistar rats. J Ethnopharmacol 123:163–166Google Scholar
  7. Arsene M, Kouakou KJ, Abo KJC, Nguessan KJ, Irie Bi JS, Kahou Bi G (2017) Myostimulant effect of leaves of Senna occidentalis (Caesalpiniaceae) on isolated rabbit duodenum. Int J Res Gran 5(4):301–310Google Scholar
  8. Arya V (2011) Antioxidant activity of organic and aqueous leaf extracts of Senna occidentalis L. in relation to their phenolic content. Nat Prod Res 25(15):1473–1479Google Scholar
  9. Arya S, Saini J, Singh S (2013) Antidiabetic activity of Senna occidentalis. Recent Res Sci Technol 5(1):51–53Google Scholar
  10. Babitha S (2011) A stimulatory effect of Senna occidentalis on melanoblast differentiation and migration. Arch Dermatol Res 303:211–216Google Scholar
  11. Badami S, Aneesh R, Sankar S, Kumar MNS, Suresh B, Rajan S (2003) Antifertility activity of Derris brevipes variety coriacea. J Ethnopharmacol 84:99–104Google Scholar
  12. Ballabh B, Chaurasia OP (2007) Traditional medicinal plants of cold desert Ladakh-used in treatment of cold, cough and fever. J Ethnopharmacol 112:341–349Google Scholar
  13. Bendre AM, Kumar A (2016) A text book of practical botany. Rastogi Publications, MeerutGoogle Scholar
  14. Bhagat M, Saxena AK (2010) Evaluation of Cassia occidentalis for in vitro cytotoxicity against human cancer cell lines and antibacterial activity. Ind J Pharm 42(4):234–237Google Scholar
  15. Bhattacharyya D, Mukherjee R, Pandit S, Das N, Sur TK (2003) Prevention of carbon tetrachloride induced hepatotoxicity in rats by Himoliv. A polyherbal formulation. Indian J Pharmacol 35:183–185Google Scholar
  16. Brindha P, Manikandaselvi S, Vadivel V (2016) Review on nutraceutical potential of Senna occidentalis L. an Indian traditional medicinal and food plant. Int J Pharm Sci Rev Res 37(2):141–146Google Scholar
  17. Choudhary PK, Nagori BP (2014) Evaluation of in vitro antimalarial activity of Senna occidentalis. World J Pharm Pharm Sci 3(2):2241–2248Google Scholar
  18. Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J (2006) Emodin, an antibacterial anthraquinone from the roots of Senna occidentalis. S Afr J Bot 72:295–297Google Scholar
  19. Coimbra R (1994) Manual of phytotherapy. Belem Publication. Accessed 19 Apr 2019
  20. Davariya VS, Vala K (2011) Antifungal activity of crude extracts of Senna occidentalis. Int J Res Phytochem Pharm 1(2):36–38Google Scholar
  21. Delmut MB, Parente LML, Paula JR, Conceição EC, Santos AS, Pfrimer IAH (2013) Cassia occidentalis: effect on healing skin wounds induced by Bothrops moojeni in mice. J Pharm Technol Drug Res 2:1–6Google Scholar
  22. Dhurandhar J (1973) ‘Bonnisan’—a metabolic corrective in gastrointestinal disorders of the newborn (a study of 100 cases). Probe 2:73Google Scholar
  23. Dictionary of Economic Plants (1968) Uphof JC. Wheldon and Wheslay Ltd, Codiote.Google Scholar
  24. Dictionary of Natural Products (2004) CD-ROM. Chapman and Hall/CRC, LondonGoogle Scholar
  25. Fidèle N, Joseph B, Emmanuel T, Theophile D (2017) Hypolipidemic, antioxidant and antiatherosclerogeniceffect of aqueous extract leaves of Senna occidentalis Linn (Caesalpiniaceae) in diet-induced hypercholesterolemic rats. BMC Comput Altern Med 17(76):1–11Google Scholar
  26. Flanagan GJ (1998) Coffee Senna (Senna occidentalis L.) invasive species compendium-agnote darwin, No. F28, CAB International Accessed 14 Feb, 2018
  27. Gidado NM, Tanko Y, Sada NH, Mohammed A (2016) Effect of Senna occidentalis leaf suppliment on blood glucose level, liver enzymes and total protein in alloxan induced diabetic wistar rats. Bay J Pure Appl Sci 9(1):68–75Google Scholar
  28. Ginde BS, Hosangadi BD, Kudav NA, Kulkarni AB (1970) Chemical investigation on Cassia occidentalis L. Isolation and structure of Cassiolin, a new Xanthone. J Chem Soc C 9:1285–1289Google Scholar
  29. Grierson AJC, Long DG (1987) Flora of Bhutan including a record of plants from Sikkim, vol. 1, part 3. Royal Botanic Garden, Edinburgh, pp 16–23Google Scholar
  30. Hom LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds, vol 1. Wiley, New York, p 391Google Scholar
  31. Ibrahim MA, Aliyu AB, Sallau AB, Bashir M, Yunusa I, Umar TS (2010) Senna occidentalis leaf extract possesses Antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharm Res 2(3):175–180Google Scholar
  32. ILDIS (2002) International legume database and information service. University of Southampton. Accessed 15, Apr, 2019
  33. IRRI (1989) Weeds reported in rice in South and South East Asia. Manila, Philippines. Accessed Apr 15, 2019
  34. Jain SK, Vadnere GP, Patil AV, Wagh SS (2011) Investigation on in vitro antioxidant activity of whole plant of Senna occidentalis Linn. (Caesalpiniaceae). Int J Pharm Technol Res 6(4):1985–1991Google Scholar
  35. Jayasuriya H, Koonchanok NM, Geahlen RL, McLaughlin JL, Chang CJ (1992) Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 55:696–698Google Scholar
  36. Kim HL, Camp BJ, Grigsby RD (1971) Isolation of N-methylmorpholine from the seeds of Senna occidentalis L. (Coffee Senna). J Agric Food Chem 19(1):198–199Google Scholar
  37. Kirtikar KR, Basu BD (2005) A book of Indian medicinal plants: plate, vol 2. International Book Distributors, Dehradun, pp 217–219Google Scholar
  38. Kitanaka S, Takido M (1989) Two new Bitetrahydroanthracene from root of Senna occidentalis. Chem Pharm Bull 37:511–512Google Scholar
  39. Kitanaka S, Igarashi H, Takido M (1985) Formation of pigments by the tissue culture of Senna occidentalis. Chem Pharm Bull 33:971–974Google Scholar
  40. Kolhapure SA, Mitra WS (2004) Meta-analysis of 50 phase III clinical trials in evaluation of efficacy and safety of Liv. 52 in infective hepatitis. Med Update 12:51–61Google Scholar
  41. Kumar A, Dhawan S, Aggarwal BB (1998) Emodin (3-methyl-1,6,8-trihydroxy-anthraquinone) inhibits TNF-induced NF-kB activation, IkB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913–918Google Scholar
  42. Kumar D, Chawla R, Dhamodaram P, Balakrishnan N (2014) Larvicidal activity of Senna occidentalis Linn. against the Larvae of Bancroftian filariasis vector mosquito Culex quinquefasciatus. J Para Res 38:Article ID 236838.
  43. Kundu S, Roy S, Lyndem LM (2014) Broad spectrum anthelmintic potential of Cassia plants. Asian Pac J Trop Biomed 4(1):S436–S441Google Scholar
  44. Lafayette SSL, Silva JBR, Costa-Silva JH, Linard-Medeiros CFB, Wanderley AG (2014) Neuroprotective effect of Senna occidentalis against 3-nitropropionic acid-induced neurotoxicity in rats. Int Res J Pharm Appl Sci 4(2):40–47Google Scholar
  45. Mahanthesh MC, Jalalpure SS (2016) Pharmacognostical assessment and anticonvulsant activity of whole plant of Senna occidentalis Linn. Int J Pharm Phytochem Res 8(9):1444–1457Google Scholar
  46. Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Amerasan PM, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Para Res 114(10):3657–3664Google Scholar
  47. Nassar MAA, Ramadan HRH, Ibrahim HMS (2011) Morphological characteristics of vegetative and reproductive growth of Senna occidentalis (L.) Link (Caesalpiniaceae). Res J Agric Biol Sci 7(2):260–270Google Scholar
  48. Neboh EE, Ufelle SA (2015) Myeloprotective activity of crude methanolic leaf extract of Senna occidentalis in cyclophosphamide-induced bone marrow suppression in Wistar rats. Adv Biomed Res 4:1–5Google Scholar
  49. Niranjan GS, Gupta PC (1973) Chemical constituents of the flowers of Senna occidentalis. Plant Med 23:298–300Google Scholar
  50. Ntchapda F, Barama J, Azambou DRK, Etet PF, Dimo T (2015) Diuretic and antioxidant activities of the aqueous extract of leaves of Senna occidentalis (Linn.) in rats. Asian Pac J Trop Med 8(9):685–693Google Scholar
  51. Nuhu AA, Aliyu R (2008) Effects of Cassia occidentalis aqueous leaf extract on biochemical markers of tissue damage in rats. Trop J Pharm Res 7:1137–1142Google Scholar
  52. Ogunkunle ATJ, Ladejobi TA (2006) Ethnobotanical and phytochemical studies on some species of Senna in Nigeria. Afr J Biotechnol 5:2020–2023Google Scholar
  53. Onakpa MM, Ajagbonna OP (2012) Antidiabetic Potentials of Senna occidentalis leaf extract on alloxan induced diabetic albino mice. Int J PharmTech Res 4(4):1766–1769Google Scholar
  54. Orech FO, Akenga T, Ochora J, Friis H, Aagaard-Hansen J (2005) Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma division, Western Kenya. Afr J Food Agric Nutr Dev 5:1–13Google Scholar
  55. Pandey M, Rastogi S, Rawat A (2008) Indian herbal drug for general healthcare: an overview. Int J Altern Med 6(1):1–2Google Scholar
  56. Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia, vol 1. CAB Direct, Canberra, pp 42–49Google Scholar
  57. Patel NK, Pulipaka S, Dubey SP, Bhutani KK (2014) Pro-inflammatory cytokines and nitric oxide inhibitory constituents from Senna occidentalis roots. Nat Prod Commun 9(5):661–664Google Scholar
  58. Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: a comparative overview. J Evid Based Complement Altern Med 2(4):465–473Google Scholar
  59. Priscila CMS, Irigoyen LF, Lucena RB, Fighera RA, Kommers GD, Barros CSL (2011) Spontaneous coffee Senna poisoning in cattle: report on 16 outbreaks. Pes Veter Bras 31(2):139–146Google Scholar
  60. Purwar C, Renu R, Nidhi S, Singh J (2003) New flavonoid glycosides from Senna occidentalis. Ind J Chem 42B:434–436Google Scholar
  61. Rai PM, Shok M (1982) Anthracene derivatives in tissue cultures of Cassia species indigenous to Nigeria. In: Fujiwara A (eds) Plan Tiss Cult Maruz Tokyo, pp 277–278Google Scholar
  62. Rajni SS, Gautam N (2014) Antibacterial and phytochemical analysis of Cassia occidentalis L. seeds against respiratory tract pathogens. Ind J Nat Prod Res 5(1):52–55Google Scholar
  63. Rani MS, Emmanuel S, Sreekanth MR, Rosemary T (2010) Evalution of antipyretic and anti-inflammatory activity of methanolic fraction and chrysophanol of Senna occidentalis Linn. Res J Pharm Technol 3(3):888–893Google Scholar
  64. Reddy K, Kulkarni KL (2001) A clinical trial of Herbolax in constipation during post-operative period. Antiseptic 7:252–253Google Scholar
  65. Ryan KJ, Ray CG (2004) Sherrie’s medical microbiology. McGraw-Hill, New YorkGoogle Scholar
  66. Sadiq IS, Shuaibu M, Bello AB, Tureta SG, Isah A, Izuagie T, Nasiru S, Kamaru MB (2012) Phtochemistry and antimicrobial activities of Senna occidentalis used for herbal remedies. J Chem Eng 1(1):38–41Google Scholar
  67. Sastry AVS, Sastry VG, Appalanaidu B, Srinivas K, Annapurna A (2011) Chemical and pharmacological evaluation of aqueous extract of seeds of Senna occidentalis. J Chem Pharm Res 2:566–575Google Scholar
  68. Sharma P (2001) DravyaGuna-Vigyan (Aubhid Ausadh–Dravya). Chaukhambha Bhartiya Academy, Varanasi, IndiaGoogle Scholar
  69. Sharma S, Choudhary M, Bhardwaj S, Choudhary N, Rana AC (2014) Hypoglycemic potential of alcoholic root extract of Senna occidentalis Linn. in streptozotocin induced diabetes in albino mice. Bull Fac Pharm Cairo Univ 52:211–217Google Scholar
  70. Sheeba M, Emmanuel S, Revathi K, Ignacimuthu S (2009) Wound healing activity of Senna occidentalis L. in albino wistar rats. Int J Int Biol 8(1):1–6Google Scholar
  71. Silva MG, Aragao TP, Vasconcelos CF, Ferreira PA, Andrade BA, Costa IM, Costa-Silva JH, Wanderley AG, Lafayette SS (2011) Acute and subacute toxicity of Senna occidentalis L. stem and leaf in Wistar rats. J Ethnopharm 136:341–346Google Scholar
  72. Singh M, Singh J (1985) Two flavonoids glycosides from Cassia occidentals pods. Plant Med 51(6):525–526Google Scholar
  73. Sini KR, Karpakavalli M, Sangeetha PT (2011) Analgesic and antipyretic activity of Senna occidentalis Linn. World Appl Sci J 11(10):1216–1219Google Scholar
  74. Sreejith G, Latha PG, Shine VJ, Anuja GI, Suja SR, Sini S, Shyama S, Pradeep S, Shikha P, Rajasekharan S (2010) Anti-allergic, anti-inflamatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J Exp Biol 48:494–498Google Scholar
  75. Stasi LCD, Hiruma-Lima CA (2002) Plantas medicinais na Amazônia e na Mata Atlântica Editora UNESP, São Paulo 604. Accessed 18 Apr, 2019
  76. Tiwari RD, Singh J (1977) Flavonoids from the leaves of S. occidentalis. Phytochemical 16:1107–1108Google Scholar
  77. Tokarnia CH, Dobereiner J, Peixoto PV (2002) Poisonous plants affecting livestock in Brazil. Toxicon 40(1):1635–1660Google Scholar
  78. Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okondahoka CK, de Bruyne T, Apers S, Hermans N, Totte J, Pieters L, Vlietinck AJ (2001) In-vivo antimalarial activity of Senna occidentalis, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Para 95:47–57Google Scholar
  79. Vashistha VM, Kumar A, John TJ, Nayak NC (2007) Cassia occidentalis poisoning causes fatal coma in children in western Uttar Pradesh. Indian Pediatr 44(7):522–525Google Scholar
  80. Vashistha VM, John TJ, Kumar A (2009) Clinical and pathological features of acute toxicity due to Senna occidentalis in vertebrates. Ind J Med Res 130(1):23–30Google Scholar
  81. Verma L, Khatri A, Kaushik B, Patil UK, Pawar RS (2010) Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats. Ind J Pharm 42(4):224–228Google Scholar
  82. Vijayabhaskar K, Chaitanyaprasad K, Srisailam K, Arunadevi NM, Swathi S, Subhashini P (2013) Analgesic and anti-inflammatory activities of the extract of Senna occidentalis Linn. animal model. Int J Res Pharm Chem 3(4):759–762Google Scholar
  83. Vijayalaxmi S, Ranjitha J, Rajeswari VD, Bhagiyalakshmi M (2013) Pharmacological profile of Senna occidentalis L—a review. Int J Pharm Pharm Sci 5(3):29–33Google Scholar
  84. WHO (World Health Organization) (2005) Preventing chronic diseases a vital investment, India, Switzerland. Accessed 18 Apr 2019
  85. Yadav JP, Arya V, Yadav S, Kumar S (2010a) Antimicrobial Activity of Senna occidentalis L (Leaf) against various Human Pathogenic Microbes. Life Sci Med Res 9:1–11Google Scholar
  86. Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S (2010b) Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 81:223–230Google Scholar
  87. Zheng YF, Liu CF, Lai WF, Xiang Q, Li ZF, Wang H, Lin N (2014) The laxative effect of emodin is attributable to increased aquaporin 3 expression in the colon of mice and HT-29 cells. Fitoterapia 96:25–32Google Scholar

Copyright information

© Institute of Korean Medicine, Kyung Hee University 2019

Authors and Affiliations

  • Harpreet Singh
    • 1
    Email author
  • Piyush Chahal
    • 1
  • Amrita Mishra
    • 1
  • Arun Kumar Mishra
    • 1
  1. 1.Advanced Phytochemistry Research Laboratory, School of Pharmaceutical Sciences, Faculty of PharmacyIFTM UniversityMoradabadIndia

Personalised recommendations