Chemical characterization and bioactivity of Trichosanthes dioica edible shoot extract

Abstract

Present investigation was aimed to evaluate the traditional use of edible part of soft shoots of Trichosanthes dioica Roxb. (Cucurbitaceae) as an antidiabetic in mice model. In addition, antioxidant activity and chemical profiling of this plant part were also performed to support its observed activity. The extract was subjected to oral glucose tolerance test in normal and alloxan induced diabetic mice to explore its antihyperglycemic activity. Antioxidant capacity was analyzed by a number of in vitro assays. Quantification of bioactive polyphenols was done by HPLC. Liquid Chromatography coupled with Mass Spectrometry (LCMS) was used to identify chemical constituents present in the extract. Total polyphenol and flavonoids content were found in significant quantity. In DPPH radical scavenging assay the IC50 value of the extract was found to be 148.62 µg/mL. Reducing power of the extract was comparable with that of butylatedhydroxytoluene (BHT). HPLC analysis indicated that quercetin, rutin, p-coumaric acid and kaempferol were the major bioactive polyphenols present in the extract. Further chemical profiling using LCMS analysis was identified a total of nine compounds with different chemical classes. In OGTT, extract (400 mg/kg BW) showed a 31.13% decrease (p < 0.05) in blood glucose levels at 30 min compared to the normal control. In alloxan induced diabetic mice the extract at the doses of 200 mg and 400 mg/kg, showed significant decrease (p < 0.05) of blood glucose level compared to diabetic control. The extract showed oral glucose tolerance potential and antioxidant capacity which might be due to the presence of different compounds such as quercetin, rutin, kaempferol, oleanolic acid, β-sitosterol. The results support the scientific basis of it ethnobotanical uses in traditional medicinal practices of Bangladesh.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdulwali A, Jamaludin M, Khalijah A, Jamil AS, Aditya A (2014) Evaluation of antidiabetic and antioxidant properties of Brucea javanica seed. Sci World J 1:786130. https://doi.org/10.1155/2014/786130

    CAS  Article  Google Scholar 

  2. Ahmad NK, Rahmat AK, Mushtaq A, Nadia M (2015) Role of antioxidant in oxidative stress and diabetes mellitus. J Pharmacogn Phytochem 3(6):217–220

    Google Scholar 

  3. Akihisa T, Ghosh P, Thakur S, Rosentein F, Matsumoto T (1986) Sterol compositions of seeds and mature plants of family cucurbitaceae. J Am Oil Chem Soc 63(5):653–658. https://doi.org/10.1007/BF02638231

    Article  CAS  Google Scholar 

  4. Anisuzzman M, Nazmul MHZ, Sharmin SK, Asaduzzman M, Golam MH (2016) Antioxidant, antibacterial potential and HPLC analysis of Dioscorea alata bulb. Indones J Pharm 27(1):9–14

    Article  CAS  Google Scholar 

  5. Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 24:547–553. https://doi.org/10.1016/j.jsps.2015.03.013

    Article  PubMed  Google Scholar 

  6. Azad AK, Jalil A, Roy DN, Ahmeda N, Nesa Jeb-Un, Moniruzzaman M, Lasker S, Irfan-Ur-Rahaman Akter S (2015) Antidiabetic and free radical scavenging activities of methanolic extract of Citrullus lanatus (fruit Rind). Eur J Pharm Med Res 2(4):405–410

    Google Scholar 

  7. Bajaj S, Khan A (2012) Antioxidants and diabetes. Indian J Endocrinol Metab 16:267–271

    Google Scholar 

  8. Bhattacharya S, Haldar PK (2012) Protective role of the triterpenoid-enriched extract of Trichosanthes dioica root against experimentally induced pain and inflammation in rodents. Nat Prod Res 26(24):2348–2352. https://doi.org/10.1080/14786419.2012.656111

    Article  PubMed  CAS  Google Scholar 

  9. Castellano JM, Guinda A, Delgado T, Rada M, Cayuela JA (2013) Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 62(6):1791–1799. https://doi.org/10.2337/db12-1215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Castellano JM, Guinda A, Macías L, Santos-Lozano JM, Lapetra J, Rada M (2016) Free radical scavenging and α-glucosidase inhibition, two potential mechanisms involved in the anti-diabetic activity of oleanolic acid. Grasas Aceites 67(3):e142. https://doi.org/10.3989/gya.1237153

    Article  CAS  Google Scholar 

  11. Cocker HAB, Adesegun SA, Sofidiya MO (2008) Phytochemical screening of bioactive agents in medicinal plants. In: Odugbemi T (ed) A text book of medicinal plants from Nigeria. University of Lagos Press, Akoka, p 209

    Google Scholar 

  12. Cristina C, Olivia DR, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40(1):314–325. https://doi.org/10.15835/nbha4017205

    Article  Google Scholar 

  13. Dawei G, Qingwang L, Ying L, Zhihua L, Yusheng F, Zhiwei L, Hongwei Z, Jian L, Zengsheng H (2009) Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats. Phytother Res 23:1257–1262. https://doi.org/10.1002/ptr.2603

    Article  CAS  Google Scholar 

  14. Dhiman K, Gupta A, Sharma DK, Gill NS (2012) A review on the medicinally important plants of the family cucurbitaceae. Asian J Clin Nutr. 4:16–26. https://doi.org/10.3923/ajcn.2012.16.26

    Article  CAS  Google Scholar 

  15. Doss A (2009) Preliminary phytochemical screening of some Indian medicinal plants. Anc Sci Life. 29(2):12–16

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Dubey VK, Patil CR, Kamble SM, Tidke PS, Patil KR, Maniya PJ, Jadhav RB, Patil SP (2013) Oleanolic acid prevents progression of streptozotocin induced diabetic nephropathy and protects renal microstructures in Sprague Dawley rats. J Pharmacol Pharmacother. 4:47–52. https://doi.org/10.4103/0976-500X.107678

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18(10):872–879

    Article  PubMed  CAS  Google Scholar 

  18. Ghani A (2005) Practical phytochemistry, 2nd edn. Parash Publishers, Dhaka, pp 8–20

    Google Scholar 

  19. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Giri S, Lokesh CR, Sahu S, Gupta N (2014) Luffa echinata: healer plant or potential killer? J Postgrad Med 60:72–74. https://doi.org/10.4103/0022-3859.128819

    Article  PubMed  CAS  Google Scholar 

  21. Halilu ME, Abubakar A, Garba MK, Isah AA (2012) Antimicrobial and preliminary phytochemical studies of methanol extract of root bark of Crossopteryx febrifuga (Rubiaceae). J Appl Pharm Sci 2(12):66–70. https://doi.org/10.7324/JAPS.2012.21212

    Article  Google Scholar 

  22. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16(1):33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341

    Article  PubMed  CAS  Google Scholar 

  23. Hamdulay N, Attaurrahaman Z, Shende V, Lawar M (2012) Evaluaiton of gastric antiulcer activity of Trichosanthes dioica Roxb. leaves. Int J Pharm Sci Res 3(11):4332–4337. https://doi.org/10.13040/IJPSR.0975-8232.3(11).4332-37

    Article  Google Scholar 

  24. Hussain AI, Rathore HA, Sattar MZA, Chatha SAS, Sarker SD, Gilani AH (2014) Citrullus colocynthis (L.) Schrad (bitter apple fruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 155(1):54–66. https://doi.org/10.1016/j.jep.2014.06.011

    Article  PubMed  CAS  Google Scholar 

  25. Imperato F (1980) Five plants of the family Cucurbitaceae with flavonoid patterns of pollens different from those of corresponding stigmas. Experientia 36(10):1136–1137. https://doi.org/10.1007/BF01976084

    Article  CAS  Google Scholar 

  26. Imtiaz M, Nazmul MHZ, Nripendra NB, Bishwajit B (2017) Bioactivities of Bruguiera gymnorrhiza and profiling of its bioactive polyphenols by HPLC-DAD. Clin Phytosci 3:11. https://doi.org/10.1186/s40816-017-0048-5

    Article  Google Scholar 

  27. Kavitha R, Premalakshmi V (2012) Studies on the synergetic effect of Trichosanthes dioica and Clitoria ternatea leaf extract on the streptozotocin-induced diabetic rats. Int J Res Pharm Biomed Sci 3(3):1056–1064

    Google Scholar 

  28. Li X, Wang X, Chen D, Shuzu C (2011) Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct Foods Heal Dis 7:232–244

    Google Scholar 

  29. McCune LM, Johns T (2002) Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. J Ethnopharmacol 82(2–3):197–205

    Article  PubMed  Google Scholar 

  30. Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné R, Švarc-Gajić J, Segura-Carretero A (2014) The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods 10:192–200. https://doi.org/10.1016/j.jff.2014.05.019

    Article  CAS  Google Scholar 

  31. Mondal A, Singha T, Maity TK, Pal D (2013) Evaluation of antitumor and antioxidant activity of Melothria heterophylla (Lour.) Cogn. Indian J Pharm Sci 75(5):515–522

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Monic S, Yerram RB, Jagadeesh B (2012) Phytochemical screening and in vitro antioxidant activity of aqueous and hydroalcoholic extract of Bacopa monnieri Linn. Int J Pharm Sci Res 3(9):3418–3424. https://doi.org/10.13040/IJPSR.0975-8232.3(9).3418-24

    Article  Google Scholar 

  33. Monika M, Nomita G, Palak P, Varsha M, Manisha K (2014) Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: a comprehensive review. Int J Pharm Pharm Sci 6(8):67–72

    Google Scholar 

  34. Nighat S, Athar A (2008) Oleanolic acid and related derivatives as medicinally important compounds. J Enzyme Inhib Med Chem 23(6):739–756. https://doi.org/10.1080/14756360701633187

    Article  CAS  Google Scholar 

  35. Nishikawa T, Araki E (2013) Mechanism-based antioxidant therapies promise to prevent diabetic complications. J Diabetes Invest 4(2):105–107. https://doi.org/10.1111/jdi.12041

    Article  CAS  Google Scholar 

  36. Olajuyigbe OO, Afolayan AJ (2011) Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd. BMC Complement Altern Med 11(1):1–8. https://doi.org/10.1186/1472-6882-11-130

    Article  CAS  Google Scholar 

  37. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Long. 2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498

    Article  Google Scholar 

  38. Prashant KR, Surekha S, Shikha M, Nilesh KR, Rai AK, Geeta W (2010) Therapeutic phytoelemental profile of Trichosanthes dioica. Adv Mater Lett 1(3):210–216. https://doi.org/10.5185/amlett.2010.7142

    Article  Google Scholar 

  39. Salma AS, Siraj MA, Hossain A, Mia MS, Afrin S, Rahman MM (2016) Investigation of the key pharmacological activities of Ficu sracemosa and analysis of Its major bioactive polyphenols by HPLC-DAD. Evid Based Complementary Altern Med. https://doi.org/10.1155/2016/3874516

    Article  Google Scholar 

  40. Sarunya C, Phanichphant S (2006) Method development and determination of phenolic compounds in Broccoli Seeds Samples. Chiang Mai J Sci 33(1):103–107

    Google Scholar 

  41. Saxena VK, Dave RK (1995) A new steroidal saponin from Trichosanthes dioica (Roxb.). Asian J Chem 7(3):490–494

    CAS  Google Scholar 

  42. Sharmila BG, Kumar G, Rajasekara PM (2007) Cholesterol-Lowering Activity of the aqueous fruit extract of Trichosanthes dioica Roxb (L.) in normal and streptozotocin diabetic rats. J Clin Diag Res 6:561–569

    Google Scholar 

  43. Shweta SS, Priyanka KT, Ganesh GT, Khadabadi SS (2013) Ancient and recent medicinal uses of cucurbitaceae family. Int J Therap Appl 9:11–19

    Google Scholar 

  44. Soodabeh S, Azadeh M, Ahmad RG, Mohammad A (2014) The story of beta-sitosterol—a review. Eur J Med Plants 4(5):590–609

    Article  Google Scholar 

  45. Soumyanath A (2005) Traditional medicines for modern times: antidiabetic plants. CRC Press, Boca Raton, p 43

    Google Scholar 

  46. Sunil K, Vipin K, Prakash O, Mohammed A (2013) Enzymes inhibition and antidiabetic effect of isolated constituents from Callistemon lanceoalatus. J Nat Prod 3(4):252–259. https://doi.org/10.2174/221031550304140328112456

    CAS  Article  Google Scholar 

  47. Yessoufou A, Gbenou J, Grissa O et al (2013) Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: modulation of T cell proliferation. BMC Complement Altern Med 13:77. https://doi.org/10.1186/1472-6882-13-77

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yusoff NA, Ahmad M, Hind B, Widyawati T, Yam MF, Mahmud R, Razak KNA, Asmawi MZ (2015) Aqueous extract of Nypa fruticans Wurmb. Vinegar alleviates postprandial hyperglycemia in normoglycemic rats. Nutrients 7:7012–7026. https://doi.org/10.3390/nu7085320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zilani MNH, Amirul MI, Sharmin SK, Jamil AS, Mustafizur MR, Golam MH (2016) Analgesic and antioxidant activities of Colocasia fallax. Orient Pharm Exp Med 16:131–137. https://doi.org/10.1007/s13596-016-0222-1

    Article  CAS  Google Scholar 

  50. Zilani MNH, Tamanna S, Asabur SMR, Anisuzzman M, Amirul MI, Jamil AS, Golam MH (2017) Chemical composition and pharmacological activities of Pisum sativum. BMC Complement Altern Med 17:171. https://doi.org/10.1186/s12906-017-1699-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Phytochemistry and Pharmacology Research Laboratory, Pharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh for providing proper working facilities. Funding portion is not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md. Nazmul Hasan Zilani.

Ethics declarations

Ethical Statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zilani, M.N.H., Uddin, S.J., Hossain, H. et al. Chemical characterization and bioactivity of Trichosanthes dioica edible shoot extract. Orient Pharm Exp Med 18, 167–175 (2018). https://doi.org/10.1007/s13596-018-0310-5

Download citation

Keywords

  • Trichosanthes dioica
  • HPLC
  • LCMS
  • Antihyperglycemic activity
  • Antioxidant activity