Skip to main content
Log in

Effect of pineapple, orange and watermelon juices on phosphodiesterase, monoamine oxidase and angiotensin-I converting enzyme activities in rat heart and brain homogenates

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Fruit juices are commonly consumed in many parts of the world for their nutritional and medicinal benefits. More specifically, Pineapple (Ananas comosus), orange (Citrus sinensis) and watermelon (Citrullus lanatus var. lanatus) juices are used in folklore for the prevention and management of cardiovascular and neurodegenerative diseases, though there is dearth of information on the mechanism for such medicinal benefits. Thetrefore, this study sought to characterize the effect of these commonly consumed fruit juices on phosphodiesterase (PDE), monoamine oxidase (MAO) and angiotensin-I converting enzyme (ACE) activities in rat heart and brain homogenates. The fruits were sourced for and the juices extracted, freeze dried and then reconstituted for the analysis. The abilities of these juices to protect the heart and brain against Fe2+ induced oxidative damage were also investigated in vitro. The results revealed that the juices inhibited PDE, MAO and ACE activities in a concentration-dependent manner in rat heart and brain homogenates with orange having the highest inhibitory ability. The juices also inhibited Fe2+ induced malondialdehyde production in rat heart and brain in a concentration-dependent manner. This study revealed that the inhibition of these enzymes and prevention of oxidative damage could be part of the mechanisms by which these fruits could serve as dietary intervention for the prevention and management of cardiovascular and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ademosun AO, Oboh G (2012) Inhibition of Acetylcholinesterase activity and Fe2+−induced lipid peroxidation in rat brain in vitro by some citrus fruit juices. J Med Food 15(5):428–434

    Article  CAS  PubMed  Google Scholar 

  • Ademosun AO, Oboh G (2014) Comparison of the inhibition of monoamine oxidase and butyrylcholinesterase activities by infusions from green tea and some citrus peels. Int J Alzheimers Dis. doi:10.1155/2014/586407

  • Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2015) Phenolics from grapefruit peels inhibit HMG-CoA reductaseand angiotensin-I converting enzyme and show antioxidative propertiesin endothelial EA.Hy 926 cells. Food Sci Human Wellness 4:80–85

    Article  Google Scholar 

  • Baker GB, Matveychuk D, MacKenzie EM, Dursun SM, Mousseau DD (2012) Monoamine oxidase inhibitors and neuroprotective mechanisms. Bull Clin Psychopharmacol 22(4):293–296

    Article  CAS  Google Scholar 

  • de Bruijn RFAB, Ikram MA (2014) Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med 12:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih J (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Sci 268:1763–1766

    Article  CAS  Google Scholar 

  • Ciobica A, Bild W, Hritcu L, Haulica I (2009) Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg 109:171–180

    PubMed  Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin I converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondria and vascular pathology. Pharmacol Rep 61:123–130

    Article  PubMed  Google Scholar 

  • Dias AT, Cintra AS, Frossard JC, Palomino Z, Casarini DE, Gomes IBS, Balarini CM, Gava AL, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC (2014) Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J Transl Med 12:250–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF, Vita JA (2001) Iron chelation improves endothelial function in patients with coronary artery disease. Circ 103:2799–2804

    Article  CAS  Google Scholar 

  • Finberg JP, Gillman K (2011) Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int Rev Neurobiol 100:169–190

    Article  CAS  PubMed  Google Scholar 

  • Francis J, Wei SG, Weiss RM, Felder RB (2004) Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am J Physiol Heart Circ Physiol 287:H2138–H2146

    Article  CAS  PubMed  Google Scholar 

  • Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AL, Haughton TM (1961) A colorimetric method for the estimation of monoamine oxidase. Biochem J 78:172–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hryniewicz K, Dimayuga C, Hudaihed A, Androne AS, Zheng H, Jankowski K, Katz SD (2005) Inhibition of angiotensin-converting enzyme and phosphodiesterase type 5 improves endothelial function in heart failure. Clin Sci 108:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kametani F (2015) Phosphodiesterase as a drug target of Alzheimer’s disease. Austin Alzheimers J Parkinsons Dis 2(1):1021

    Google Scholar 

  • Kelly SJ, Butler LG (1977) Enzymic hydrolysis of phosphonate esters. Reaction mechanism of intestinal 5′-nucleotide phosphodiesterase. Biochemist 16(6):1102–1104

    Article  CAS  Google Scholar 

  • Ko WC, Shih CM, Lai YH, Chen JH, Huang HL (2004) Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure–activity relationships. Biochem Pharmacol 68:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Labandeira-Garcia JL, Rodriguez-Pallares J, Rodríguez-Perez AI, Garrido-Gil P, Villar-Cheda B, Valenzuela R, Guerra MJ (2012) Brain angiotensin and dopaminergic degeneration: relevance to Parkinson’s disease. Am J Neurodegener Dis 1(3):226–244

    PubMed  PubMed Central  Google Scholar 

  • Montezano AC, Touyz RM (2012) Molecular mechanisms of hypertension- reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 28(3):288–295

    Article  CAS  PubMed  Google Scholar 

  • National Institutes for Health (2011) Guide for the care and use of laboratory animals. The National Academies Press, Washignton, DC

    Google Scholar 

  • Oboh G, Ademosun AO (2011) Shaddock peels (Citrus maxima) phenolic extracts inhibit a-amylase, a-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Diabetes Metab Syndr Clin Res Rev 5(3):148–152

    Article  Google Scholar 

  • Oboh G, Ademosun AO (2012) Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J Food Sci Technol 49(6):729–736

    Article  CAS  PubMed  Google Scholar 

  • Oboh G, Ademosun AO, Akinleye M, Omojokun OS, Boligon AA, Athayde ML (2015) Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. J Ethnic Food 2:64–73

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Orallo F, Camina M, Alvarez E et al (2005) Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus-fruits flavonoid (•})-naringenin. Planta Med 71:99–107

  • Peluso MR (2006) Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp Biol Med (Maywood) 231(8):1287–1299

    Article  CAS  Google Scholar 

  • Pérez-Torres S, Cortés R, Tolnay M, Probst A, Palacios JM, Mengod G (2003) Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp Neurol 182:322–334

    Article  PubMed  Google Scholar 

  • Raasch W, Bartels T, Gieselberg A, Dendorfer A, Dominiak P (2002) Angiotensin I-converting enzyme inhibition increases cardiac catecholamine content and reduces monoamine oxidase activity via an angiotensin type 1 receptor-mediated mechanism. J Pharmacol Exp Ther 300:428–434

    Article  CAS  PubMed  Google Scholar 

  • Rezvanfar MA, Rezvanfar MA, Ranjbar A, Baeeri M, Mohammadirad A, Abdollahi M (2010) Biochemical evidence on positive effects of rolipram a phosphodiesterase-4 inhibitor in malathion-induced toxic stress in rat blood and brain mitochondria. Pestic Biochem Physiol 98:135–143

    Article  CAS  Google Scholar 

  • Rodriguez-Rodriguez R, Simonsen U (2012) Measurement of nitric oxide andreactive oxygen species in the vascular wall. Curr Anal Chem 8:1–10

    Article  Google Scholar 

  • Santos C, Snyder PJ, Wu W, Zhang M, Echeverria A, Alb J (2017) Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alz Dementia Diag Assessment Dis Monitoring 7:69–87

    Article  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunctionand vascular disease. Biochem Pharmacol 78(6):539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturza A, Leisegang MS, Babelova A et al (2013) Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension 62:140–146

    Article  CAS  PubMed  Google Scholar 

  • Teloken PE, Mulhall JP (2008) Impact of phosphodiesterase type 5 inhibitors on endothelial function. Rev Urol 10(1):26–30

    PubMed  PubMed Central  Google Scholar 

  • Turski W, Turska E, Grossbell M (1973) Modification of the spectrophotometric method of the determination of monoamine oxidase. Enzyme 14:211–220

    Article  Google Scholar 

  • Ugarte A, Gil-Bea F, García-Barroso C, Cedazo-Minguez Á, Ramírez MJ, Franco R et al (2015) Decreased levels of guanosine 3′, 5′-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer’s disease. Neuropathol Appl Neurobiol 41:471–482

    Article  CAS  PubMed  Google Scholar 

  • Virdis A, Duranti E, Taddei S (2011) Oxidative stress and vascular dam-age in hypertension: role of angiotensin II. Int J Hypertens. doi:10.4061/2011/916310

Download references

Acknowledgements

The authors would like to thank Dr. S.A. Adefegha for his advice and encouragement during the drafting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayokunle O. Ademosun.

Ethics declarations

Ethical Statement

The handling and use of the animals were in accordance with the National Institutes for Health Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ademosun, A.O., Oboh, G. Effect of pineapple, orange and watermelon juices on phosphodiesterase, monoamine oxidase and angiotensin-I converting enzyme activities in rat heart and brain homogenates. Orient Pharm Exp Med 17, 269–276 (2017). https://doi.org/10.1007/s13596-017-0279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-017-0279-5

Keywords

Navigation