Skip to main content
Log in

Anti-diabetic, lipid lowering and antioxidant potential of Girardinia heterophylla in high fat diet and streptozotocin induced diabetic rats

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

The present study was aimed to investigate the possible antidiabetic, Lipid lowering and antioxidant potential of three different extracts of Girardinia heterophylla roots on high fat diet and streptozotocin (HFD + STZ 55 mg/kg) induced diabetes in albino rats. Different extracts of Girardinia heterophylla roots (200 mg/kg b.w) were administered to diabetic rats for about 60 days. The effect of extracts on blood glucose, glycosylated haemoglobin, serum lipid profile like total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL) and antioxidant parameters like Thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), glutathione peroxidase (GPX), Superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR) were measured in control and test groups. Among the three extracts, the ethanolic extract of Girardinia heterophylla elicited significant (p < 0.05) reduction of raised blood glucose levels, lipid profiles (except HDL) and significant elevation of antioxidant levels when compared to HFD + STZ induced diabetic rats. From the results of the present study, ethanol extract of Girardinia heterophylla offers promising antidiabetic, lipid lowering and antioxidant potential that may be mainly attributed to its potent antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi A (1984) Methods in enzymatic analysis, Academic Press, New York, 2: 674–84

  • Alberti KG, Zimmet PZ (1998) New diagnostic criteria and classification of diabetes-again? Diabet Med 15:535–536

    Article  CAS  PubMed  Google Scholar 

  • Arvind K, Pradeep R, Deepa R, Mohan V (2002) Diabetes and coronary artery diseases. Indian J Med Res 116:163–176

    CAS  PubMed  Google Scholar 

  • Bala R, Stalin A, Ignacimuthu S (2012) Molecular docking of γ-sitosterol with some target related to diabetes. Eur J of Med Chem 47:39

    Google Scholar 

  • Balamurugan R, Duraipandiyan V, Ignacimuthu S (2011) Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur J of Pharmacol 667:410

    Article  CAS  Google Scholar 

  • Calixto JB (2005) Twenty-years of research on medicinal plants in Latin America: apersonal view. J Ethanoparmacol 100:131–134

    Article  Google Scholar 

  • Collins MA, Charles HY (1989) Antimicrobial activity of carnosol and ursolic acid: two anti-oxidant constituents of Rosmarius officinalis. Food Microbiol 4:311

    Article  Google Scholar 

  • Foster LB, Dunn RT (1973) Stable reagents for the determination of serum triglycerides by colorimetric hantzsch condensation method. Clin Chem 19:338–340

    CAS  PubMed  Google Scholar 

  • Friedwald WT, Levy RJ, Fredricken DS (1972) Estimation of LDL-C in the plasma without the use of preparative ultracentrifuge. Clin Chem 18:449

    Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS (2011) Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin induced experimental hyperglycemia. J Diabetes 3:29

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidant as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  • Halerstein RA (2005) Medicinal plants: Historical and cross-cultural usage patterns. Ann Epidemiol 15:686–699

    Article  Google Scholar 

  • Harborne JB (1984) Phytochemical methods 11 Edn. Chapman & Hall, New York, pp 4–5

    Book  Google Scholar 

  • Heinrich M, Barnes J, Gibbons S, and Williamson E M (2012) Fundamentals of Pharmacognosy and Phytotherapy, Churchill Livingstone, Edinburgh, UK, 2nd ed

  • Holman RR, Turner RC (1991) Oral agents and insulin in the treatment of NIDDM. In: Pickup J, Wiliams G (eds) Textbook of Diabetes. Blackwell, Oxford, pp 407–469

    Google Scholar 

  • Kakkar P, Das B, Vishwanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  • Kandasamy M, Yeligar V, Dash DK, Sengupta P, Maiti BC, Maity TK (2006) Antidiabetic, antioxidant and anti hyperlipidemic status of heliotropium zeylanicum extract on streptozotocin induced diabetic in rats. Biol Pharma Bull 29(11):2202–2205

    Article  Google Scholar 

  • Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y, Hu CQ, Yeh E, Lee K (1998) Anti-AIDS agents, 30 Anti-HIV activity of oleanolic acid, promolic acid and structurally related triterpenoids. J Nat Prod 61(19):1090

    Article  CAS  PubMed  Google Scholar 

  • Khare (2007) Indian medicinal plants, an illustrated dictionary, Springer 293

  • Kim KW (1997) Anticancer activities of plant triterpenoids, ursolic acid and oleanoid acid. J Korean Assoc Cancer Preven Metas Antitumor 2:38

    Google Scholar 

  • Kim JD, Kang SM, Park MY (2009) Ameliorative antidiabetic activity of dangnyosoko, a Chinese herbal medicine in diabetic rats. Biotechnol Biochem 71:1527–1534

    Article  Google Scholar 

  • Kulkarni S (1993) Experimental pharmacology, India 168–172

  • Loizou S, Lekakis I, Chrousos GP, Moutsatsou P (2010) Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nut Food Res 54:551

    Article  CAS  Google Scholar 

  • Loven D, Schedl H, Wilson H, Daabees TT, Stegink LD, Diekus M, Oberley L (1986) Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptazotocin induced diabetes. Diabetes 5:503–507

    Article  Google Scholar 

  • Mathé D (1995) Dyslipidemia and diabetes: animal models. Diabetes Metab 21:106–111

    Google Scholar 

  • Nakakimura H, Mizuno K (1980) Studies on lipid peroxidation in biological system. II. Hyperlipoperoxidemia in mice induced by alloxan. Chem Pharm Bull 28:2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Netaji T, Niture AA, Ansari AA, Naik SR (2014) Anti hyperglycaemic activity of Rutin in streptozotocin- induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52:720–727

    Google Scholar 

  • Nisha T, Kumar S, Singh R, Singh CJ, Singh P, Varshney VK (2013) Phytochemical studies from the roots of Girardinia heterophylla Oriental. J Chem 4(8):545–550

    Google Scholar 

  • OECD (2001) OECD Guidelines for the testing of chemicals, test no. 423: acute oral toxicity—acute toxic class method 1–5

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxides. J Lab Clin Med 70:158–159

    CAS  PubMed  Google Scholar 

  • Palumbo PJ (1998) Metformin: effect on cardiovascular risk factor in patients with non-insulin dependent diabetes mellitus. J Diabetes Complicat 12:110–119

    Article  CAS  PubMed  Google Scholar 

  • Pari L, Saravanan G (2002) Antidiabetic effect of cogent db, a herbal drug in alloxan-induced diabetes mellitus. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 131:19–25

    Article  CAS  Google Scholar 

  • Posuwan J, Prangthip P, Leardkamolkarn V, Yamborisut U, Surasiang R, Charoensiri R (2013) Long-term supplementation of high pigmented rice bran oil (Oryza sativa L) on amelioration of oxidative stress and histological changes in streptozotocin-induced diabetic rats fed a high fat diet; Riceberry bran oil. Food Chem 138:501–508

    Article  CAS  PubMed  Google Scholar 

  • Racker E (1955) Glutathione reductase from bakers’ yeast and beef liver. J Biol Chem 217:855–866

    CAS  PubMed  Google Scholar 

  • Rajan S, Sethuraman M (1991) Plants used in folk medicine by the Kotas of Nilgiri District, Tamil Nadu. Ancient Sci Life 10(4):223–230

    CAS  Google Scholar 

  • Regin EG, Siby J (2014) A review of newer treatment approaches for type-2 diabetes: focusing safety and efficacy of incretin based therapy. Saudi Pharm J 22:403–410

    Article  Google Scholar 

  • Rukkumani R, Aruna K, Varma PS, Rajasekaran KN, Menon VP (2004) Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. J Pharm Pharm Sci 7:274–283

    CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1996) Methods in biochemistry, 2nd edn. New Age International Pvt. Ltd., New Delhi

    Google Scholar 

  • Saxena PR, Tangri KK, Bhargava KP (1966) Identification of acetylcholine, histamine, and 5-hydroxytryptamine in Girardinia heterophylla (Decne.). Can J Physiol Pharmacol 44(4):621–627

    Article  CAS  PubMed  Google Scholar 

  • Sekar N, Kanthasamy S, William S, Subramanium S, Govindasamy S (1990) Insulinic -actions of Vanadate in diabetic rats. Pharmacol Res 22:207–217

    Article  CAS  PubMed  Google Scholar 

  • Sener G, Sehirli AO, Gedik N, Dulger GA (2007) Rosiglitazone, a PPAR-γ ligand, protects against burn-induced oxidative injury of remote organs. Burns 33:587–593

    Article  PubMed  Google Scholar 

  • Sheryl LM, Heberth D, Paula M, Rinaldo D, Eduardo LO, Marcelo (2005) Dietary models for inducing hypercholesterolemia in rats. Braz Arch Biol Technol 48(2):150–159

    Google Scholar 

  • Shukla B, Visen PKS, Patnaik GK, Tripathi SC, Srimal RC, Dayal R, Dobhal PC (1992) Hepatoprotective activity in the rat of ursolic acid isolated from Eucalyptus Hybrid. Phytotherapy 6:74

    Article  CAS  Google Scholar 

  • Shukla R, Sharma SB, Puri D, Prabhu KM (2000) Medicinal plants for treatment of diabetes mellitus. Indian J Clin Biochem 15:169

    Article  Google Scholar 

  • Soon JK, Song HB, Sangku L, Hye JK, Mi KL, Yong B, Myung SC (2005) Anticholesterolemic effect of 3,4-di(OH)-phenyl propionicamides in high-cholesterol fed rats. Toxicol Appl Pharmacol 208:29–36

    Article  Google Scholar 

  • Subash Babu P, Prabu Seenivasan P, Ignacimuthu S (2007) Cinnamaldehyde a potential antidiabetic agent. Phytomedicine 14:15–22

    Article  CAS  PubMed  Google Scholar 

  • Sunil C, Latha PG, Suja SR, Shine VJ, Shayamal Anju GI (2009) Effect of ethanolic extract of pisonia alba span. Leaves on blood glucose levels and histological changes in tissues of alloxan-induced diabetic rats. Int J Appl Res Nat Prod 2(2):4–11

    Google Scholar 

  • Szyndler J, Rok P, Maciejak P, Walkowiak P, Czaonkowska AI, Sienkiewicz H (2002) Behavioral, biochemical and histological studies in a model of pilocarpine-induced spontaneous recurrent seizures. Pharmacol Biochem Behav 81:15–23

    Article  Google Scholar 

  • Torrico F, Cepeda M, Guerrero G, Melendez F, Blanco Z, Canelon DJ, Diaz B, Compagnone RS, Suarez AI (2007) Hypoglycemic effect of Croton cuneatus in streptozotocin-induced diabetic rats. Braz J Pharmacogn 17:166–169

    Article  Google Scholar 

  • Wilt TJ, Macdonald R, Ishani A (1999) Beta-sitosterol for the treatment of benign prostatic hyperplasia (a systematic review). BJU Int 83(9):976

    Article  CAS  PubMed  Google Scholar 

  • Wrzeciono U, Malecki I, Budzianowski J, Kierylowicz H, Zaprutko L, Beimvik E, Kostepska H (1985) Nitrogenous triterpene derivatives, part 10: hemisuccunates of some derivatives of oleanolic acid and their antiulcer effects. Pharmaz 40:542

    CAS  Google Scholar 

  • Young HS, Chung HY, Lee CK, Park KY, Yokozawa T, Oura H (1994) Ursolic acid inhibits aflatoxin B1 induced mutagenicity in a Salmonella assay system. Biol Pharmacol Bull 17:990–992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to All India Council for Technical Education (AICTE), Govt. of India, New Delhi, for providing financial assistance.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experimental protocols were approved by institutional animal ethics committee (SVCP/IAEC/I-021/2013-14) and conducted according to the CPCSEA guidelines for the use and care of experimental animals, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohanalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanalakshmi, S., Kumar, C.K.A., Jayaraman, R. et al. Anti-diabetic, lipid lowering and antioxidant potential of Girardinia heterophylla in high fat diet and streptozotocin induced diabetic rats. Orient Pharm Exp Med 15, 287–295 (2015). https://doi.org/10.1007/s13596-015-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-015-0196-4

Keywords

Navigation