Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review

Abstract

Medicinal plants have been a rich source of medicines. Mucuna pruriens is extensively used in Ayurveda to treat kampavat (Parkinson’s disease in modern medicine), a disease characterized by excess of Vata. Clinical and preclinical studies have substantiated claims on its efficacy and safety in PD and there are indications that it is more effective than the levodopa in reducing dyskinesias. Several constituents of Mucuna seeds such as genistein, gallic acid, unsaturated acids, nicotine, bufotenin, harmin alkaloids, lecithin, etc. have been isolated which possess neuroprotective activity and support the antiPD activity of levodopa. The review describes various constituents of Mucuna pruriens seeds in context to therapeutic utility in treating Parkinson’s disease. Since the conventional treatment of PD using levodopa with other add-on drugs is very expensive and Mucuna pruriens seeds are easily available and economic, the use of standardized extract of Mucuna seeds may drastically reduce the cost of treatment and also reduce the progression of disease. The review emphasizes the importance of holistic approach of Ayurveda in using the Mucuna pruriens in treatment of PD. Further studies may provide an approach to understand the mechanisms involved in treating PD with lesser adverse effects.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ahmed M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  Google Scholar 

  2. Ahmed M, Yousuf S, Khan MB, Hoda MN, Ahmad AS, Ansari MA, Ishrat T, Agrawal AK, Islam F (2006) Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 83:150–160

    Article  CAS  Google Scholar 

  3. Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216

    PubMed  CAS  Article  Google Scholar 

  4. Azcoitia I, Moreno A, Carrero P, Palacios S, Garcia-Segura LM (2006) Neuroprotective effects of soy phytoestrogens in the rat brain. Gynecol Endocrinol 22:63–69

    PubMed  CAS  Article  Google Scholar 

  5. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    PubMed  CAS  Article  Google Scholar 

  6. Baluchnejadmojarad T, Roghani M, Jalali MR, Bagheri NM (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23:132–135

    PubMed  CAS  Article  Google Scholar 

  7. Ban JY, Nguyen HT, Lee HJ, Cho SO, Ju HS, Kim JY, Bae K, Song KS, Seong YH (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25−35)-induced toxicity in cultured rat cortical neurons. Biol Pharm Bull 31:149–153

    PubMed  CAS  Article  Google Scholar 

  8. Barbeau A (1980) Lecithin in Parkinson’s disease. J Neural Transm Suppl 16:187–193

    PubMed  Google Scholar 

  9. Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56:1441–1444

    PubMed  CAS  Article  Google Scholar 

  10. Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 9:110–113

    CAS  Article  Google Scholar 

  11. Borah A, Kochupurackal P, Mohanakumar P (2007) Long-term l-dopa treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol 27:985–996

    PubMed  CAS  Article  Google Scholar 

  12. Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces L-3, 4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247

    PubMed  CAS  Article  Google Scholar 

  13. Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in L-DOPA induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938

    PubMed  CAS  Article  Google Scholar 

  14. Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22:1213–1225

    PubMed  CAS  Article  Google Scholar 

  15. Bressani R (2002) Factors influencing nutritive value in food grain legumes: Mucuna compared to other grain legumes. In: Food and feed from Mucuna: current uses and the way forward, workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras, 164–188

  16. Campbell EL, Chebib M, Johnston GAR (2004) The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem Pharmacol 68:1631–1638

    PubMed  CAS  Article  Google Scholar 

  17. Cenci MA (2007) Dopamine dysregulation of movement control in LDOPA-induced dyskinesia. Trends Neurosci 30:236–243

    PubMed  CAS  Article  Google Scholar 

  18. Charlton C (1997) Depletion of nigrostriatal and forebrain tyrosine hydroxylase by S-adenosyl methionine: a model that may explain the occurrence of depression in Parkinson’s disease. Life Sci 61:495–502

    PubMed  CAS  Article  Google Scholar 

  19. Charlton C, Crowell B (1992) Parkinson’s disease-like effects of S-adenosyl-L-methionine: effects of l-dopa. Pharmacol Biochem Behav 43:423–431

    PubMed  CAS  Article  Google Scholar 

  20. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28:425–433

    PubMed  Article  CAS  Google Scholar 

  21. Damodaran M, Ramaswamy R (1937) Isolation of L-dopa from the seeds of Mucuna pruriens. Biochem J 31:2149–2151

    PubMed  CAS  Google Scholar 

  22. Dexter DT, Carter CJ, Wells FR (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    PubMed  CAS  Article  Google Scholar 

  23. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    PubMed  Article  Google Scholar 

  24. Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug–Mucuna pruriens shows antioxidant and metal chelating activity. Phytother Res 22:6–11

    PubMed  CAS  Article  Google Scholar 

  25. Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In-vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70:2492–2499

    PubMed  CAS  Article  Google Scholar 

  26. Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp 170–173

    Google Scholar 

  27. Dunne EL, Moss SJ, Smart TG (1998) Inhibition of GABAA receptor function by tyrosine kinase inhibitors and their inactive analogues. Mol Cell Neurosci 12:300–310

    PubMed  CAS  Article  Google Scholar 

  28. Foley P, Riederer P (2000) Influence of neurotoxins and oxidative stress on the onset and progression of Parkinson’s disease. J Neurol 247:82–94

    Article  Google Scholar 

  29. Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, Dunckley T (2011) β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One 6:e19264

    PubMed  CAS  Article  Google Scholar 

  30. Fuller TA, Russchen FT, Price JL (1987) Sources of presumptive glutamatergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258(3):I7–I338

    Article  Google Scholar 

  31. Glennon RA, Dukat M, Grella B (2000) Binding of β-carbolines and relating agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepines receptors. Drug Alcohol Depend 60:121–132

    PubMed  CAS  Article  Google Scholar 

  32. Gockler N, Jofre G, Papadopoulos C, Soppa U, Tejedor FJ (2009) Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J 276:6324–6337

    PubMed  Article  CAS  Google Scholar 

  33. Godkar PB, Gordon RK, Ravindran A, Doctor BP (2004) Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain. J Ethnopharmacol 93:213–219

    PubMed  Article  Google Scholar 

  34. Graf E, Eaton JW (1990) Antioxidant activity of phytic acid. Free Radic Biol Med 8:61–69

    PubMed  CAS  Article  Google Scholar 

  35. Grella B, Dukat M, Young R, Teitler M, Davis KH, Gauthier CB, Glennon RA (1998) Investigation of hallucinogenic and related β-carbolines. Drug Alcohol Depend 50:99–107

    PubMed  CAS  Article  Google Scholar 

  36. Growdon JH, Melamed E, Logue M (1982) Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic acid levels in patients with Parkinson’s disease. Life Sci 30:827–832

    PubMed  CAS  Article  Google Scholar 

  37. Hall S, Rulledge JH, Schallert T (1992) MRI brain iron and 6-hydroxydopamine experimental Parkinson’s disease. J Neurol Sci 113:198–208

    PubMed  CAS  Article  Google Scholar 

  38. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    PubMed  CAS  Article  Google Scholar 

  39. Hauser RA, Lyons KE, McClain T (2009) Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease. Mov Disord 24:979–983

    PubMed  Article  Google Scholar 

  40. He Y, Thong PSP, Lee T, Leong SK, Shi CY, Wong PTH, Yuan SY, Watt F (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 735:149–153

    PubMed  CAS  Article  Google Scholar 

  41. Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386

    PubMed  CAS  Article  Google Scholar 

  42. Hinz M (2009) Depression. In: Kohlstadt I (ed) Food and nutrients in disease management. CRC Press, Baton Rouge, pp 465–481

    Google Scholar 

  43. Hinz M, Stein A, Uncini T (2011) Amino acid management of Parkinson’s disease: a case study. Int J Gen Med 4:165–174

    PubMed  CAS  Article  Google Scholar 

  44. Horning MS, Blakemore LJ, Trombley PQ (2000) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852:56–61

    PubMed  CAS  Article  Google Scholar 

  45. Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignal 14:6–22

    CAS  Article  Google Scholar 

  46. Huang RQ, Fang MJ, Dillon GH (1999) The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Mol Brain Res 67:177–183

    PubMed  CAS  Article  Google Scholar 

  47. Huang LZ, Campos C, Ly J, Carroll FI, Quik M (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868

    PubMed  CAS  Article  Google Scholar 

  48. Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Nutt DJ, Lewis JW, Hudson AL (2001) β-carboline binding to imidazole receptors. Drug Alcohol Depend 64:203–208

    PubMed  CAS  Article  Google Scholar 

  49. Jellinger K, Paulus W, Grundke-Iqbal I (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2:327–340

    PubMed  CAS  Article  Google Scholar 

  50. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:S24–S34

    Google Scholar 

  51. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    PubMed  CAS  Article  Google Scholar 

  52. Johnson S (2001) The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 56:163–170

    PubMed  CAS  Article  Google Scholar 

  53. Kala BK, Mohan VR (2010) Chemical composition and nutritional evaluation of lesser known pulses of the genus, Mucuna. Adv Biores 1:105–116

    Google Scholar 

  54. Kalidass C, Mohan VR (2011) Nutritional and antinutritional composition of itching bean (Mucuna pruriens (L.) DC var. pruriens): an underutilized tribal pulse in Western Ghats. Tamil Nadu Trop Subtrop Agroecosyst 14:279–293

    Google Scholar 

  55. Kari AJ, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    Article  Google Scholar 

  56. Karobath M, Diaz J, Huttunen M (1971) The effect of l-dopa on the concentrations of tryptophan, tyrosine, and serotonin in the rat brain. Eur J Pharmacol 14:393–396

    PubMed  CAS  Article  Google Scholar 

  57. Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009a) Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122

    PubMed  Article  Google Scholar 

  58. Kasture VS, Katti SA, Mahajan D, Wagh R, Mohan M, Kasture SB (2009b) Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacol Online 1:385–395

    Google Scholar 

  59. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmerman L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurosurg Psychiatry 75:1672–1677

    CAS  Article  Google Scholar 

  60. Kidd PM (1997) Glutathione: systemic protectant against oxidative and free radical damage. Altern Med Rev 2:155–176

    Google Scholar 

  61. Kidd PM (1999) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–545

    Google Scholar 

  62. Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by β-carboline derivates. Arch Biochem Biophys 337:137–142

    PubMed  CAS  Article  Google Scholar 

  63. Kirtikar KR, Basu BD (1985) Indian medicinal plants. Mahendrapal Singh; Dehradun. India

  64. Ko KM, Godin DV (1990) Ferric ion-induced lipid peroxidation in erythrocyte membranes: effects of phytic acid and butylated hydroxytoluene. Mol Cell Biochem 95:125–131

    PubMed  CAS  Google Scholar 

  65. Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q10 provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28:125–141

    PubMed  CAS  Article  Google Scholar 

  66. Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O (2010) Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva 52:181–186

    Google Scholar 

  67. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    PubMed  CAS  Article  Google Scholar 

  68. Lee CS, Han ES, Jang YY, Han JH, Ha HW, Kim DE (2000) Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 cell. J Neurochem 75:521–531

    PubMed  CAS  Article  Google Scholar 

  69. Lee SH, Park HJ, Cho SY, Jung HJ, Cho SM, Cho YS, Lillehoj HS (2005) Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice. Nutr Res 25:869–876

    CAS  Article  Google Scholar 

  70. Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16:458–465

    PubMed  Article  Google Scholar 

  71. Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert EV, Deogaonkar M, Manyam BV, Subramanian T (2012) The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evid Based Complement Alternat Med 1–10

  72. Liochev SI, Fridovich I (1994) The role of O2 in the production of HO: in vitro and in vivo. Free Radic Biol Med 16:29–33

    PubMed  CAS  Article  Google Scholar 

  73. Liu LX, Chen W-F, Xie J-X, Wong MS (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60:156–161

    Google Scholar 

  74. Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274

    PubMed  CAS  Article  Google Scholar 

  75. Ma W, Yuan L, Yu H, Ding B, Xi Y, Feng J, Xiao R (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25−35 in PC12 cells. Int J Dev Neurosci 28:289–295

    PubMed  Article  CAS  Google Scholar 

  76. Mahajani SS, Doshi VJ, Parikh KM, Manyam BV (1996) Bioavailability of L-DOPA from HP-200—a formulation of seed powder of Mucuna pruriens (Bak): a pharmacokinetic and pharmacodynamic study. Phytother Res 10:254–256

    CAS  Article  Google Scholar 

  77. Maher P, Davis JB (1996) The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16:6394–6401

    PubMed  CAS  Google Scholar 

  78. Mandel S, Weinreb O, Amit T, Youdim MBH (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Rev 48:379–387

    PubMed  CAS  Article  Google Scholar 

  79. Manyam BV (1990) Paralysis agitans and levodopa in Ayurveda: ancient Indian medical treatise. Mov Disord 5:47–48

    PubMed  CAS  Article  Google Scholar 

  80. Manyam BV, Dhanasekaran M, Hare TA (2004) Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res 9:706–712

    Article  Google Scholar 

  81. Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N,N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323

    PubMed  CAS  Article  Google Scholar 

  82. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    Google Scholar 

  83. May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309

    PubMed  CAS  Article  Google Scholar 

  84. McKenna DJ, Towers GH (1984) Biochemistry and pharmacology of tryptamines and beta-carbolines. A minireview. J Psychoactive Drugs 16:347–358

    PubMed  CAS  Article  Google Scholar 

  85. Mehta JC, Majumdar DN (1994) Indian medicinal plants V–Mucuna pruriens bark (Papilionaceae). Indian J Pharmacol 6:92–94

    Google Scholar 

  86. Miyamoto S, Kuwata G, Imai M, Nagao A, Terao J (2000) Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes. Lipids 35:1411–1414

    PubMed  CAS  Article  Google Scholar 

  87. Moura DJ, Richter MF, Boeira JM, Henriques JAP, Saffi J (2007) Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 22:293–302

    PubMed  CAS  Article  Google Scholar 

  88. Muñoz A, Li Q, Gardoni F, Marcello E, Qin C, Carlsson T, Kirik D, Di Luca M, Björklund A, Bezard E, Carta M (2008) Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain 131:3380–3394

    PubMed  Article  Google Scholar 

  89. Muñoz A, Carlsson T, Tronci E, Kirik D, Björklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219:298–307

    PubMed  Article  CAS  Google Scholar 

  90. Nagashayana N, Sankarankutty P, Nampoothirir MR (2000) Association of L-dopa with recovery following ayurveda medication in Parkinson’s disease. J Neurol Sci 176:124–127

    PubMed  CAS  Article  Google Scholar 

  91. Naidu PS, Singh A, Kulkarni SK (2003) Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J Med Food 6:107–114

    PubMed  Article  Google Scholar 

  92. Obata T (2003) Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Res 978:241–244

    PubMed  CAS  Article  Google Scholar 

  93. Pathan AA, Mohan M, Kasture AS, Kasture SB (2011) Mucuna pruriens attenuates haloperidol-induced orofacial dyskinesia in rats. Nat Prod Res 25:764–771

    PubMed  CAS  Article  Google Scholar 

  94. Pearce RK, Owen A, Daniel S (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677

    PubMed  CAS  Article  Google Scholar 

  95. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310

    PubMed  CAS  Article  Google Scholar 

  96. Pimpinella G, Palmery M (1995) Interaction of β-carbolines with central dopaminergic transmission in mice: structure-activity relationships. Neurosci Lett 189:121–124

    PubMed  CAS  Article  Google Scholar 

  97. Polanski W, Reichmann H, Gille G (2011) Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-beta-carboline: a new anti-Parkinson drug? Expert Rev Neurother 11:845–860

    PubMed  CAS  Article  Google Scholar 

  98. Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors–from molecular biology to clinical applications. Physiol Res 60:15–25

    PubMed  CAS  Google Scholar 

  99. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78:677–685

    PubMed  CAS  Article  Google Scholar 

  100. Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831

    PubMed  Article  Google Scholar 

  101. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    PubMed  CAS  Article  Google Scholar 

  102. Rommelspacher H, May T, Salewski B (1994) Harman (1-methyl-beta-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur J Pharmacol 252:51–59

    PubMed  CAS  Article  Google Scholar 

  103. Ruscher K, Rzeczinski S, Thein E, Freyer D, Victorov IV, Lam TT, Dirnagl U (2007) Neuroprotective effects of the beta-carboline abecarnil studied in cultured cortical neurons and organotypic retinal cultures. Neuropharmacology 52:1488–1495

    PubMed  CAS  Article  Google Scholar 

  104. Sameri MJ, Sarkaki A, Farbood Y, Mansouri SM (2011) Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animal model of Parkinson’s disease. Pak J Biol Sci 15:1109–1116

    Google Scholar 

  105. Sathiayanarayanan L, Arulmozhi S (2007) Mucuna pruriens Linn: a comprehensive review. Pharmacognsy Rev 1:157–162

    Google Scholar 

  106. Schapira AHV, Mann VM, Cooper JM (1990) Anatomic and disease specificity of NADH, CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    PubMed  CAS  Article  Google Scholar 

  107. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963

    PubMed  Article  Google Scholar 

  108. Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1159–1170

    CAS  Article  Google Scholar 

  109. Seidl SE, Potashkin JA (2011) The promise of neuroprotective agents in Parkinson’s disease. Front Neurol 2:68–87

    PubMed  Article  CAS  Google Scholar 

  110. Sekar S, Elumalai P, Seppan P (2010) Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm. Int J Androl 33:22–32

    Article  CAS  Google Scholar 

  111. Serrano-Dueñas M, Cardozo-Pelaez F, Sánchez-Ramos JR (2001) Effects of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Alt Med 5:129–134

    Google Scholar 

  112. Shanish AA, Roy PD, Vadivelan R, Jaysankar K, Vikram M, Nandini S, Sundeep M, Elango K, Suresh B (2010) Amelioration of CNS toxicities of L-dopa in experimental models of Parkinson’s disease by concurrent treatment with Tinospora cordifolia hygeia. J Drug Med 2:28–37

    Google Scholar 

  113. Shen H-W, Jiang X-L, Winter JC, Yu A-M (2010) Psychedelic 5-methoxy-N, N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11:659–666

    PubMed  CAS  Article  Google Scholar 

  114. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    PubMed  Article  Google Scholar 

  115. Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5–HT2A and 5–HT2C receptors. Pharmacol Biochem Behav 61:323–330

    PubMed  CAS  Article  Google Scholar 

  116. Song JX, Sze SC, Ng TB, Lee CK, Leung GP, Shaw PC, Tong Y, Zhang YB (2012) Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? J Ethnopharmacol 139:698–711

    PubMed  CAS  Article  Google Scholar 

  117. Squires EP, Hills CE, Rogers GJ, Garland P, Farley SR, Morgan NG (2004) The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilization in pancreatic β-cells. Eur J Pharmacol 501:31–39

    PubMed  CAS  Article  Google Scholar 

  118. Sridhar KR, Bhat R (2007) Agrobotanical, nutritional and bioactive potential of unconventional legume–Mucuna. Livest Res Rural Dev 19:126–130

    Google Scholar 

  119. Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP lesioned hemiparkinsonian african green monkey: evidence from proton microprobe element microanalysis. J Neurochem 62:134–146

    PubMed  CAS  Article  Google Scholar 

  120. Tricklebank MD, Forler C, Middlemiss DN, Fozard JR (1985) Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N, N-dimethyltryptamine in the rat. Eur J Pharmacol 117:15–24

    PubMed  CAS  Article  Google Scholar 

  121. Tse SYH, Mak IT, Dickens BF (1991) Antioxidative properties of harmane and β-carboline alkaloids. Biochem Pharmacol 42:459–464

    PubMed  CAS  Article  Google Scholar 

  122. Uitti RJ, Rajput AH, Rozdilsky B (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314

    PubMed  CAS  Google Scholar 

  123. Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H (2009) New perspectives for synergy research with the “omic”-technologies. Phytomedicine 16:495–508

    PubMed  CAS  Article  Google Scholar 

  124. Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010) Drug development from natural products: exploring synergistic effects. Indian J Exp Biol 48:208–211

    PubMed  CAS  Google Scholar 

  125. Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K, Matsuzaki M, Takeuchi T (1975) Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and streptomyces. J Antibiot 28:947–952

    PubMed  CAS  Article  Google Scholar 

  126. Vaidya AB, Rajgopalan TS, Mankodi NA (1978) Treatment of Parkinsons disease with the cowhage plant–Mucuna pruriens (Bak). Neurol India 36:171–176

    Google Scholar 

  127. Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    PubMed  CAS  Article  Google Scholar 

  128. Wang Z-J, Li G-M, Tang W-L, Yin M (2006) Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin 27:145–150

    PubMed  CAS  Article  Google Scholar 

  129. Williams BB, Li D, Wegrzynowicz M, Vadodaria BK, Anderson JG, Kwakye GF, Aschner M, Erikson KM, Bowman AB (2010) Disease-toxicant screen reveals a neuroprotective interaction between Huntington’s disease and manganese exposure. J Neurochem 112:227–237

    PubMed  CAS  Article  Google Scholar 

  130. Xu Q, Kanthasamy AG, Reddy MB (2011) Phytic acid protects against 6-hydroxydopamine-induced dopaminergic neuron apoptosis in normal and iron excess conditions in a cell culture model. Park Dis 2011:1–6

    Article  CAS  Google Scholar 

  131. Yamaguchi T, Nagatsu T (1983) Effects of tyrosine administration on serum biopterin in normal controls and patients with Parkinson’s disease. Science 219:75–77

    PubMed  CAS  Article  Google Scholar 

  132. Youdim MBH, Ben-Schachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 126:47–54

    CAS  Article  Google Scholar 

  133. Yritia M, Riba J, Ortuño J, Ramirez A, Castillo A, Alfaro Y, de la Torre R, Barbanoj MJ (2002) Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca. J Chromatogr B Anal Technol Biomed Life Sci 779:271–281

    CAS  Article  Google Scholar 

  134. Zeevalk G, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203:512–520

    PubMed  CAS  Article  Google Scholar 

  135. Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–249

    PubMed  CAS  Article  Google Scholar 

  136. Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates β-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188

    PubMed  CAS  Article  Google Scholar 

Download references

Conflicts of interest

None

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kasture.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kasture, S., Mohan, M. & Kasture, V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. Orient Pharm Exp Med 13, 165–174 (2013). https://doi.org/10.1007/s13596-013-0126-2

Download citation

Keywords

  • Mucuna pruriens
  • Genistein
  • Neuroprotective
  • Antioxidants
  • Unsaturated acids