Advertisement

Oriental Pharmacy and Experimental Medicine

, Volume 13, Issue 3, pp 165–174 | Cite as

Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review

  • Sanjay KastureEmail author
  • Mahalaxmi Mohan
  • Veena Kasture
Review

Abstract

Medicinal plants have been a rich source of medicines. Mucuna pruriens is extensively used in Ayurveda to treat kampavat (Parkinson’s disease in modern medicine), a disease characterized by excess of Vata. Clinical and preclinical studies have substantiated claims on its efficacy and safety in PD and there are indications that it is more effective than the levodopa in reducing dyskinesias. Several constituents of Mucuna seeds such as genistein, gallic acid, unsaturated acids, nicotine, bufotenin, harmin alkaloids, lecithin, etc. have been isolated which possess neuroprotective activity and support the antiPD activity of levodopa. The review describes various constituents of Mucuna pruriens seeds in context to therapeutic utility in treating Parkinson’s disease. Since the conventional treatment of PD using levodopa with other add-on drugs is very expensive and Mucuna pruriens seeds are easily available and economic, the use of standardized extract of Mucuna seeds may drastically reduce the cost of treatment and also reduce the progression of disease. The review emphasizes the importance of holistic approach of Ayurveda in using the Mucuna pruriens in treatment of PD. Further studies may provide an approach to understand the mechanisms involved in treating PD with lesser adverse effects.

Keywords

Mucuna pruriens Genistein Neuroprotective Antioxidants Unsaturated acids 

Notes

Conflicts of interest

None

References

  1. Ahmed M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147CrossRefGoogle Scholar
  2. Ahmed M, Yousuf S, Khan MB, Hoda MN, Ahmad AS, Ansari MA, Ishrat T, Agrawal AK, Islam F (2006) Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 83:150–160CrossRefGoogle Scholar
  3. Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216PubMedCrossRefGoogle Scholar
  4. Azcoitia I, Moreno A, Carrero P, Palacios S, Garcia-Segura LM (2006) Neuroprotective effects of soy phytoestrogens in the rat brain. Gynecol Endocrinol 22:63–69PubMedCrossRefGoogle Scholar
  5. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358PubMedCrossRefGoogle Scholar
  6. Baluchnejadmojarad T, Roghani M, Jalali MR, Bagheri NM (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23:132–135PubMedCrossRefGoogle Scholar
  7. Ban JY, Nguyen HT, Lee HJ, Cho SO, Ju HS, Kim JY, Bae K, Song KS, Seong YH (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25−35)-induced toxicity in cultured rat cortical neurons. Biol Pharm Bull 31:149–153PubMedCrossRefGoogle Scholar
  8. Barbeau A (1980) Lecithin in Parkinson’s disease. J Neural Transm Suppl 16:187–193PubMedGoogle Scholar
  9. Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56:1441–1444PubMedCrossRefGoogle Scholar
  10. Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 9:110–113CrossRefGoogle Scholar
  11. Borah A, Kochupurackal P, Mohanakumar P (2007) Long-term l-dopa treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol 27:985–996PubMedCrossRefGoogle Scholar
  12. Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces L-3, 4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247PubMedCrossRefGoogle Scholar
  13. Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in L-DOPA induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938PubMedCrossRefGoogle Scholar
  14. Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22:1213–1225PubMedCrossRefGoogle Scholar
  15. Bressani R (2002) Factors influencing nutritive value in food grain legumes: Mucuna compared to other grain legumes. In: Food and feed from Mucuna: current uses and the way forward, workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras, 164–188Google Scholar
  16. Campbell EL, Chebib M, Johnston GAR (2004) The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem Pharmacol 68:1631–1638PubMedCrossRefGoogle Scholar
  17. Cenci MA (2007) Dopamine dysregulation of movement control in LDOPA-induced dyskinesia. Trends Neurosci 30:236–243PubMedCrossRefGoogle Scholar
  18. Charlton C (1997) Depletion of nigrostriatal and forebrain tyrosine hydroxylase by S-adenosyl methionine: a model that may explain the occurrence of depression in Parkinson’s disease. Life Sci 61:495–502PubMedCrossRefGoogle Scholar
  19. Charlton C, Crowell B (1992) Parkinson’s disease-like effects of S-adenosyl-L-methionine: effects of l-dopa. Pharmacol Biochem Behav 43:423–431PubMedCrossRefGoogle Scholar
  20. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28:425–433PubMedCrossRefGoogle Scholar
  21. Damodaran M, Ramaswamy R (1937) Isolation of L-dopa from the seeds of Mucuna pruriens. Biochem J 31:2149–2151PubMedGoogle Scholar
  22. Dexter DT, Carter CJ, Wells FR (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389PubMedCrossRefGoogle Scholar
  23. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975PubMedCrossRefGoogle Scholar
  24. Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug–Mucuna pruriens shows antioxidant and metal chelating activity. Phytother Res 22:6–11PubMedCrossRefGoogle Scholar
  25. Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In-vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70:2492–2499PubMedCrossRefGoogle Scholar
  26. Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp 170–173CrossRefGoogle Scholar
  27. Dunne EL, Moss SJ, Smart TG (1998) Inhibition of GABAA receptor function by tyrosine kinase inhibitors and their inactive analogues. Mol Cell Neurosci 12:300–310PubMedCrossRefGoogle Scholar
  28. Foley P, Riederer P (2000) Influence of neurotoxins and oxidative stress on the onset and progression of Parkinson’s disease. J Neurol 247:82–94CrossRefGoogle Scholar
  29. Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, Dunckley T (2011) β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One 6:e19264PubMedCrossRefGoogle Scholar
  30. Fuller TA, Russchen FT, Price JL (1987) Sources of presumptive glutamatergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258(3):I7–I338CrossRefGoogle Scholar
  31. Glennon RA, Dukat M, Grella B (2000) Binding of β-carbolines and relating agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepines receptors. Drug Alcohol Depend 60:121–132PubMedCrossRefGoogle Scholar
  32. Gockler N, Jofre G, Papadopoulos C, Soppa U, Tejedor FJ (2009) Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J 276:6324–6337PubMedCrossRefGoogle Scholar
  33. Godkar PB, Gordon RK, Ravindran A, Doctor BP (2004) Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain. J Ethnopharmacol 93:213–219PubMedCrossRefGoogle Scholar
  34. Graf E, Eaton JW (1990) Antioxidant activity of phytic acid. Free Radic Biol Med 8:61–69PubMedCrossRefGoogle Scholar
  35. Grella B, Dukat M, Young R, Teitler M, Davis KH, Gauthier CB, Glennon RA (1998) Investigation of hallucinogenic and related β-carbolines. Drug Alcohol Depend 50:99–107PubMedCrossRefGoogle Scholar
  36. Growdon JH, Melamed E, Logue M (1982) Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic acid levels in patients with Parkinson’s disease. Life Sci 30:827–832PubMedCrossRefGoogle Scholar
  37. Hall S, Rulledge JH, Schallert T (1992) MRI brain iron and 6-hydroxydopamine experimental Parkinson’s disease. J Neurol Sci 113:198–208PubMedCrossRefGoogle Scholar
  38. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRefGoogle Scholar
  39. Hauser RA, Lyons KE, McClain T (2009) Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease. Mov Disord 24:979–983PubMedCrossRefGoogle Scholar
  40. He Y, Thong PSP, Lee T, Leong SK, Shi CY, Wong PTH, Yuan SY, Watt F (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 735:149–153PubMedCrossRefGoogle Scholar
  41. Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386PubMedCrossRefGoogle Scholar
  42. Hinz M (2009) Depression. In: Kohlstadt I (ed) Food and nutrients in disease management. CRC Press, Baton Rouge, pp 465–481Google Scholar
  43. Hinz M, Stein A, Uncini T (2011) Amino acid management of Parkinson’s disease: a case study. Int J Gen Med 4:165–174PubMedCrossRefGoogle Scholar
  44. Horning MS, Blakemore LJ, Trombley PQ (2000) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852:56–61PubMedCrossRefGoogle Scholar
  45. Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignal 14:6–22CrossRefGoogle Scholar
  46. Huang RQ, Fang MJ, Dillon GH (1999) The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Mol Brain Res 67:177–183PubMedCrossRefGoogle Scholar
  47. Huang LZ, Campos C, Ly J, Carroll FI, Quik M (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868PubMedCrossRefGoogle Scholar
  48. Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Nutt DJ, Lewis JW, Hudson AL (2001) β-carboline binding to imidazole receptors. Drug Alcohol Depend 64:203–208PubMedCrossRefGoogle Scholar
  49. Jellinger K, Paulus W, Grundke-Iqbal I (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2:327–340PubMedCrossRefGoogle Scholar
  50. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:S24–S34Google Scholar
  51. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170PubMedCrossRefGoogle Scholar
  52. Johnson S (2001) The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 56:163–170PubMedCrossRefGoogle Scholar
  53. Kala BK, Mohan VR (2010) Chemical composition and nutritional evaluation of lesser known pulses of the genus, Mucuna. Adv Biores 1:105–116Google Scholar
  54. Kalidass C, Mohan VR (2011) Nutritional and antinutritional composition of itching bean (Mucuna pruriens (L.) DC var. pruriens): an underutilized tribal pulse in Western Ghats. Tamil Nadu Trop Subtrop Agroecosyst 14:279–293Google Scholar
  55. Kari AJ, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491CrossRefGoogle Scholar
  56. Karobath M, Diaz J, Huttunen M (1971) The effect of l-dopa on the concentrations of tryptophan, tyrosine, and serotonin in the rat brain. Eur J Pharmacol 14:393–396PubMedCrossRefGoogle Scholar
  57. Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009a) Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122PubMedCrossRefGoogle Scholar
  58. Kasture VS, Katti SA, Mahajan D, Wagh R, Mohan M, Kasture SB (2009b) Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacol Online 1:385–395Google Scholar
  59. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmerman L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurosurg Psychiatry 75:1672–1677CrossRefGoogle Scholar
  60. Kidd PM (1997) Glutathione: systemic protectant against oxidative and free radical damage. Altern Med Rev 2:155–176Google Scholar
  61. Kidd PM (1999) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–545Google Scholar
  62. Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by β-carboline derivates. Arch Biochem Biophys 337:137–142PubMedCrossRefGoogle Scholar
  63. Kirtikar KR, Basu BD (1985) Indian medicinal plants. Mahendrapal Singh; Dehradun. IndiaGoogle Scholar
  64. Ko KM, Godin DV (1990) Ferric ion-induced lipid peroxidation in erythrocyte membranes: effects of phytic acid and butylated hydroxytoluene. Mol Cell Biochem 95:125–131PubMedGoogle Scholar
  65. Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q10 provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28:125–141PubMedCrossRefGoogle Scholar
  66. Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O (2010) Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva 52:181–186Google Scholar
  67. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793PubMedCrossRefGoogle Scholar
  68. Lee CS, Han ES, Jang YY, Han JH, Ha HW, Kim DE (2000) Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 cell. J Neurochem 75:521–531PubMedCrossRefGoogle Scholar
  69. Lee SH, Park HJ, Cho SY, Jung HJ, Cho SM, Cho YS, Lillehoj HS (2005) Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice. Nutr Res 25:869–876CrossRefGoogle Scholar
  70. Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16:458–465PubMedCrossRefGoogle Scholar
  71. Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert EV, Deogaonkar M, Manyam BV, Subramanian T (2012) The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evid Based Complement Alternat Med 1–10Google Scholar
  72. Liochev SI, Fridovich I (1994) The role of O2 in the production of HO: in vitro and in vivo. Free Radic Biol Med 16:29–33PubMedCrossRefGoogle Scholar
  73. Liu LX, Chen W-F, Xie J-X, Wong MS (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60:156–161Google Scholar
  74. Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274PubMedCrossRefGoogle Scholar
  75. Ma W, Yuan L, Yu H, Ding B, Xi Y, Feng J, Xiao R (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25−35 in PC12 cells. Int J Dev Neurosci 28:289–295PubMedCrossRefGoogle Scholar
  76. Mahajani SS, Doshi VJ, Parikh KM, Manyam BV (1996) Bioavailability of L-DOPA from HP-200—a formulation of seed powder of Mucuna pruriens (Bak): a pharmacokinetic and pharmacodynamic study. Phytother Res 10:254–256CrossRefGoogle Scholar
  77. Maher P, Davis JB (1996) The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16:6394–6401PubMedGoogle Scholar
  78. Mandel S, Weinreb O, Amit T, Youdim MBH (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Rev 48:379–387PubMedCrossRefGoogle Scholar
  79. Manyam BV (1990) Paralysis agitans and levodopa in Ayurveda: ancient Indian medical treatise. Mov Disord 5:47–48PubMedCrossRefGoogle Scholar
  80. Manyam BV, Dhanasekaran M, Hare TA (2004) Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res 9:706–712CrossRefGoogle Scholar
  81. Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N,N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323PubMedCrossRefGoogle Scholar
  82. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068Google Scholar
  83. May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309PubMedCrossRefGoogle Scholar
  84. McKenna DJ, Towers GH (1984) Biochemistry and pharmacology of tryptamines and beta-carbolines. A minireview. J Psychoactive Drugs 16:347–358PubMedCrossRefGoogle Scholar
  85. Mehta JC, Majumdar DN (1994) Indian medicinal plants V–Mucuna pruriens bark (Papilionaceae). Indian J Pharmacol 6:92–94Google Scholar
  86. Miyamoto S, Kuwata G, Imai M, Nagao A, Terao J (2000) Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes. Lipids 35:1411–1414PubMedCrossRefGoogle Scholar
  87. Moura DJ, Richter MF, Boeira JM, Henriques JAP, Saffi J (2007) Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 22:293–302PubMedCrossRefGoogle Scholar
  88. Muñoz A, Li Q, Gardoni F, Marcello E, Qin C, Carlsson T, Kirik D, Di Luca M, Björklund A, Bezard E, Carta M (2008) Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain 131:3380–3394PubMedCrossRefGoogle Scholar
  89. Muñoz A, Carlsson T, Tronci E, Kirik D, Björklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219:298–307PubMedCrossRefGoogle Scholar
  90. Nagashayana N, Sankarankutty P, Nampoothirir MR (2000) Association of L-dopa with recovery following ayurveda medication in Parkinson’s disease. J Neurol Sci 176:124–127PubMedCrossRefGoogle Scholar
  91. Naidu PS, Singh A, Kulkarni SK (2003) Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J Med Food 6:107–114PubMedCrossRefGoogle Scholar
  92. Obata T (2003) Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Res 978:241–244PubMedCrossRefGoogle Scholar
  93. Pathan AA, Mohan M, Kasture AS, Kasture SB (2011) Mucuna pruriens attenuates haloperidol-induced orofacial dyskinesia in rats. Nat Prod Res 25:764–771PubMedCrossRefGoogle Scholar
  94. Pearce RK, Owen A, Daniel S (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677PubMedCrossRefGoogle Scholar
  95. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310PubMedCrossRefGoogle Scholar
  96. Pimpinella G, Palmery M (1995) Interaction of β-carbolines with central dopaminergic transmission in mice: structure-activity relationships. Neurosci Lett 189:121–124PubMedCrossRefGoogle Scholar
  97. Polanski W, Reichmann H, Gille G (2011) Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-beta-carboline: a new anti-Parkinson drug? Expert Rev Neurother 11:845–860PubMedCrossRefGoogle Scholar
  98. Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors–from molecular biology to clinical applications. Physiol Res 60:15–25PubMedGoogle Scholar
  99. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78:677–685PubMedCrossRefGoogle Scholar
  100. Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831PubMedCrossRefGoogle Scholar
  101. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520PubMedCrossRefGoogle Scholar
  102. Rommelspacher H, May T, Salewski B (1994) Harman (1-methyl-beta-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur J Pharmacol 252:51–59PubMedCrossRefGoogle Scholar
  103. Ruscher K, Rzeczinski S, Thein E, Freyer D, Victorov IV, Lam TT, Dirnagl U (2007) Neuroprotective effects of the beta-carboline abecarnil studied in cultured cortical neurons and organotypic retinal cultures. Neuropharmacology 52:1488–1495PubMedCrossRefGoogle Scholar
  104. Sameri MJ, Sarkaki A, Farbood Y, Mansouri SM (2011) Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animal model of Parkinson’s disease. Pak J Biol Sci 15:1109–1116Google Scholar
  105. Sathiayanarayanan L, Arulmozhi S (2007) Mucuna pruriens Linn: a comprehensive review. Pharmacognsy Rev 1:157–162Google Scholar
  106. Schapira AHV, Mann VM, Cooper JM (1990) Anatomic and disease specificity of NADH, CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145PubMedCrossRefGoogle Scholar
  107. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963PubMedCrossRefGoogle Scholar
  108. Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1159–1170CrossRefGoogle Scholar
  109. Seidl SE, Potashkin JA (2011) The promise of neuroprotective agents in Parkinson’s disease. Front Neurol 2:68–87PubMedCrossRefGoogle Scholar
  110. Sekar S, Elumalai P, Seppan P (2010) Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm. Int J Androl 33:22–32CrossRefGoogle Scholar
  111. Serrano-Dueñas M, Cardozo-Pelaez F, Sánchez-Ramos JR (2001) Effects of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Alt Med 5:129–134Google Scholar
  112. Shanish AA, Roy PD, Vadivelan R, Jaysankar K, Vikram M, Nandini S, Sundeep M, Elango K, Suresh B (2010) Amelioration of CNS toxicities of L-dopa in experimental models of Parkinson’s disease by concurrent treatment with Tinospora cordifolia hygeia. J Drug Med 2:28–37Google Scholar
  113. Shen H-W, Jiang X-L, Winter JC, Yu A-M (2010) Psychedelic 5-methoxy-N, N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11:659–666PubMedCrossRefGoogle Scholar
  114. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550PubMedCrossRefGoogle Scholar
  115. Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5–HT2A and 5–HT2C receptors. Pharmacol Biochem Behav 61:323–330PubMedCrossRefGoogle Scholar
  116. Song JX, Sze SC, Ng TB, Lee CK, Leung GP, Shaw PC, Tong Y, Zhang YB (2012) Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? J Ethnopharmacol 139:698–711PubMedCrossRefGoogle Scholar
  117. Squires EP, Hills CE, Rogers GJ, Garland P, Farley SR, Morgan NG (2004) The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilization in pancreatic β-cells. Eur J Pharmacol 501:31–39PubMedCrossRefGoogle Scholar
  118. Sridhar KR, Bhat R (2007) Agrobotanical, nutritional and bioactive potential of unconventional legume–Mucuna. Livest Res Rural Dev 19:126–130Google Scholar
  119. Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP lesioned hemiparkinsonian african green monkey: evidence from proton microprobe element microanalysis. J Neurochem 62:134–146PubMedCrossRefGoogle Scholar
  120. Tricklebank MD, Forler C, Middlemiss DN, Fozard JR (1985) Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N, N-dimethyltryptamine in the rat. Eur J Pharmacol 117:15–24PubMedCrossRefGoogle Scholar
  121. Tse SYH, Mak IT, Dickens BF (1991) Antioxidative properties of harmane and β-carboline alkaloids. Biochem Pharmacol 42:459–464PubMedCrossRefGoogle Scholar
  122. Uitti RJ, Rajput AH, Rozdilsky B (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314PubMedGoogle Scholar
  123. Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H (2009) New perspectives for synergy research with the “omic”-technologies. Phytomedicine 16:495–508PubMedCrossRefGoogle Scholar
  124. Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010) Drug development from natural products: exploring synergistic effects. Indian J Exp Biol 48:208–211PubMedGoogle Scholar
  125. Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K, Matsuzaki M, Takeuchi T (1975) Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and streptomyces. J Antibiot 28:947–952PubMedCrossRefGoogle Scholar
  126. Vaidya AB, Rajgopalan TS, Mankodi NA (1978) Treatment of Parkinsons disease with the cowhage plant–Mucuna pruriens (Bak). Neurol India 36:171–176Google Scholar
  127. Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110PubMedCrossRefGoogle Scholar
  128. Wang Z-J, Li G-M, Tang W-L, Yin M (2006) Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin 27:145–150PubMedCrossRefGoogle Scholar
  129. Williams BB, Li D, Wegrzynowicz M, Vadodaria BK, Anderson JG, Kwakye GF, Aschner M, Erikson KM, Bowman AB (2010) Disease-toxicant screen reveals a neuroprotective interaction between Huntington’s disease and manganese exposure. J Neurochem 112:227–237PubMedCrossRefGoogle Scholar
  130. Xu Q, Kanthasamy AG, Reddy MB (2011) Phytic acid protects against 6-hydroxydopamine-induced dopaminergic neuron apoptosis in normal and iron excess conditions in a cell culture model. Park Dis 2011:1–6CrossRefGoogle Scholar
  131. Yamaguchi T, Nagatsu T (1983) Effects of tyrosine administration on serum biopterin in normal controls and patients with Parkinson’s disease. Science 219:75–77PubMedCrossRefGoogle Scholar
  132. Youdim MBH, Ben-Schachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 126:47–54CrossRefGoogle Scholar
  133. Yritia M, Riba J, Ortuño J, Ramirez A, Castillo A, Alfaro Y, de la Torre R, Barbanoj MJ (2002) Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca. J Chromatogr B Anal Technol Biomed Life Sci 779:271–281CrossRefGoogle Scholar
  134. Zeevalk G, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203:512–520PubMedCrossRefGoogle Scholar
  135. Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–249PubMedCrossRefGoogle Scholar
  136. Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates β-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Korean Medicine, Kyung Hee University 2013

Authors and Affiliations

  • Sanjay Kasture
    • 1
    • 2
    Email author
  • Mahalaxmi Mohan
    • 3
  • Veena Kasture
    • 1
    • 2
  1. 1.Sanjivani College of Pharmaceutical Education & ResearchKopargaonIndia
  2. 2.Pinnacle Biomedical Research InstituteBhopalIndia
  3. 3.Priyadarshini College of Pharmaceutical SciencesHyderabadIndia

Personalised recommendations