Renoprotective effects of oryzanol in an animal model of experimentally induced diabetic nephropathy

Abstract

Hyperglycemia-mediated oxidative stress is an important causal factor for the development and progression of diabetic nephropathy. Hence, the present study was hypothesized to explore the renoprotective potential of oryzanol, a commercially-important antioxidant component isolated from crude rice bran oil, in diabetes-induced experimental nephropathy. Wistar rats were administered streptozotocin (45 mg/kg i.v., once) to induce experimental diabetes mellitus. Animals were then divided into the following groups; normal control rats, diabetic rats, diabetic rats administered with oryzanol (50 and 100 mg/kg) and diabetic rats administered with standard glibenclamide (10 mg/kg) orally. Following 8 weeks of streptozotocin injection and respective treatments, fasting blood glucose, biochemical markers of renal function and renal oxidative stress were evaluated in serum, urine and kidney tissue, together with histopathological assessment. The results revealed that treatment with oryzanol significantly improved the glycemic status and renal function in diabetic rats with respect to marked normalization on the levels of creatinine, uric acid, blood urea nitrogen, albumin, urinary albumin:creatinine ratio, kidney tissue enzyme, total protein, serum lipid profile and electrolyte concentrations in a dose-dependent manner. Further, oryzanol supplementation revealed a considerable dose-dependent improvement in superoxide dismutase and catalase activities and reduced glutathione levels, with a significant decline in the extent of lipid peroxidation in diabetic kidneys. Histopathological observations also evidenced regression in renal pathological alterations with oryzanol. Therefore, oryzanol confers marked protection against functional and morphologic injuries in the kidneys of diabetic rats by modulating renal alterations, improving serum lipid profile and attenuating the markers of oxidative and/or nitrosative stress in renal tissues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aebi HE (1983) Catalase. In: Bergmeyer HU, Bergmeyer J, Grabl M (eds) Methods of enzymatic analysis. Verlag Chemie, New York, pp 273–286

    Google Scholar 

  2. Afshari AT, Shirpoor A, Farshid A, Saadatian R, Rasmi Y, Saboory E, Ilkhanizadeh B, Allameh A (2007) The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats. Food Chem 101:148–153

    CAS  Article  Google Scholar 

  3. Almdal TP, Vilstrup H (1988a) Effect of streptozotocin induced diabetes and diet on nitrogen loss from organs and the capacity of urea synthesis in rats. Diabetologia 30:952–956

    Article  Google Scholar 

  4. Almdal TP, Vilstrup H (1988b) Strick insulin treatment normalizes the organic nitrogen contents and the capacity of urea-N synthesis in experimental diabetes in rats. Diabetologia 31:114–118

    CAS  PubMed  Article  Google Scholar 

  5. Arora MK, Reddy K, Balakumar P (2010) The low dose combination of fenofibrate and rosiglitazone halts the progression of diabetes-induced experimental nephropathy. Eur J Pharmacol 636:137–144

    CAS  PubMed  Article  Google Scholar 

  6. Arreola-Mendoza L, Reyes JL, Melendez E, Martin D, Namorado MC, Sanchez E, Del Razo LM (2006) Alpha-tocopherol protects against the renal damage caused by potassium dichromate. Toxicology 218:237–246

    CAS  PubMed  Google Scholar 

  7. Asayama K, Nakana T, Uchida N, Hayashibe H, Dobashi K, Nakazawa S (1994) Serum antioxidant status in streptozotocin-induced diabetic rat. Horm Metab Res 26:313–314

    CAS  PubMed  Article  Google Scholar 

  8. Bonnet F, Cooper ME (2000) Potential influence of lipids in diabetic nephropathy: insights from experimental data and clinical studies. Diabetes Metab 26:254–264

    CAS  PubMed  Google Scholar 

  9. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J (2009) The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and vascular walls of streptozotocin-induced diabetic rats. Clinics (Sao Paulo) 64:235–244

    Article  Google Scholar 

  10. Cai Y, Chen J, Jiang J, Cao W, He L (2010) Zhen-wu-tang, a blended traditional Chinese herbal medicine, ameliorates proteinuria and renal damage of streptozotocin-induced diabetic nephropathy in rats. J Ethnopharmacol 131:88–94

    PubMed  Article  Google Scholar 

  11. Caspe S, Davidson P, Truhlar J (1949) Creatinine indices of diabetes subjects and effect of muscular degeneration. Am J Physiol 159:461–466

    CAS  PubMed  Google Scholar 

  12. Chang CC, Chang CY, Wu YT, Huang JP, Yen TH, Hung LM (2011) Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 18:47

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Chatterjea MN, Shinde R (2002) Text book of medicinal biochemistry. Jaypee Brothers Medical Publishers, New Delhi, p 317

    Google Scholar 

  14. Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S (2009) Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 25:964–972

    CAS  PubMed  Article  Google Scholar 

  15. Dice JF, Walker CD, Byrne B, Cardiel A (1978) General characteristics of protein degradation in diabetes and starvation. Proc Natl Acad Sci USA 75:2093–2097

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Drug Information Online (2012) Gamma Oryzanol. http://www.drugs.com/npp/gamma-oryzanol.html. Accessed on March 2012

  17. Duvillard L, Florentin E, Lizard G, Petit JM, Galland F, Monier S, Gambert P, Verges B (2003) Cell surface expression of LDL receptor is decreased in type 2 diabetic patients and is normalized by insulin therapy. Diabetes Care 26:1540–1544

    CAS  PubMed  Article  Google Scholar 

  18. Fekete A, Rosta K, Wagner L, Prokai A, Degrell P, Ruzicska E, Vegh E, Toth M, Ronai K, Rusai K, Somogyi A, Tulassay T, Szabo AJ, Ver A (2008) Na+, K + −ATPase is modulated by angiotensin II in diabetic rat kidney – another reason for diabetic nephropathy? J Physiol 586:5337–5348

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Fogh-Andersen N, McNair P, Mgller-Petersen J, Madsbad S (1982) Serum calcium fractions in diabetes mellitus. Clin Chem 28:2073–2076

    CAS  PubMed  Google Scholar 

  20. Gao D, Li Q, Gao Z, Wang L (2012) Antidiabetic effects of Corni Fructus extract in streptozotocin-induced diabetic rats. Yonsei Med J 53:691–700

    PubMed Central  PubMed  Article  Google Scholar 

  21. Genuth SM (1973) Plasma insulin and glucose profile in normal, obese and diabetic persons. Ann Intern Med 79:812–822

    CAS  PubMed  Article  Google Scholar 

  22. Ghatak SB, Panchal SJ (2010) Methodical characterization and quantitative estimation of crude Oryza sativa bran oil. Int J Chem Anal Sci 1:181–185

    Google Scholar 

  23. Ghatak SB, Panchal SJ (2011) Gamma-Oryzanol– a multi-purpose steryl ferulate. Curr Nutr Food Sci 7:10–20

    CAS  Article  Google Scholar 

  24. Ghatak SB, Panchal SJ (2012a) Anti-hyperlipidemic activity of oryzanol, isolated from crude rice bran oil, on Triton WR-1339-induced acute hyperlipidemia in rats. Rev Bras Farmacogn 22:642–648

    CAS  Article  Google Scholar 

  25. Ghatak SB, Panchal SJ (2012b) Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother Res 26:1701–1708

    CAS  PubMed  Article  Google Scholar 

  26. Ghatak SB, Panchal SJ (2012c) Anti-diabetic activity of oryzanol and its relationship with the anti-oxidant property. Int J Diabetes Dev Ctries 32:185–192

    CAS  Article  Google Scholar 

  27. Griess P (1879) Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. Chem Ber 12:426–428

    Article  Google Scholar 

  28. Guthrie RA, Guthrie DW (2004) Pathophysiology of diabetes mellitus. Crit Care Nurs Q 27:113–125

    PubMed  Article  Google Scholar 

  29. Haidara MA, Mikhailidis DP, Rateb MA, Ahmed ZA, Yassin HZ, Ibrahim IM, Rashed LA (2009) Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J Diabetes Complications 23:130–136

    PubMed  Article  Google Scholar 

  30. Hough S, Avioli AV (1984) Alterations of bone and mineral metabolism in diabetes. In: Nattrass M, Santiago JV (eds) Recent advances in diabetes. pp 223–229

  31. Hovind P, Rossing P, Johnson RJ, Parving HH (2011) Serum uric acid as a new player in the development of diabetic nephropathy. J Ren Nutr 21:124–127

    CAS  PubMed  Article  Google Scholar 

  32. Hu QH, Wang C, Li JM, Zhang DM, Kong LD (2009) Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol 297:F1080–F1091

    CAS  PubMed  Article  Google Scholar 

  33. Ishii N, Ogawa Z, Suzuki K, Numakami K, Saruta T, Itoh H (1996) Glucose loading induces DNA fragmentation in rat proximal tubular cells. Metabolism 45:1348–1353

    CAS  PubMed  Article  Google Scholar 

  34. Kaplan SA, Lippe BM, Brinkman CR, Davidson MB, Geffner ME (1982) Diabetes mellitus. Ann Intern Med 96:635–649

    CAS  PubMed  Article  Google Scholar 

  35. Kaushik P, Kaushik D, Yadav J, Pahwa P (2013) Protective effect of Alpinia galanga in STZ induced diabetic nephropathy. Pak J Biol Sci 16:804–811

    CAS  PubMed  Article  Google Scholar 

  36. Komers R, Allen TJ, Cooper ME (1994) Role of endothelium derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes 43:1190–1197

    CAS  PubMed  Article  Google Scholar 

  37. Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, Roncal C, Johnson RJ, Nakagawa T (2009) Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol 297:F481–F488

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Kuhad A, Chopra K (2008) Lycopene ameliorates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rat. Indian J Exp Biol 46:108–111

    CAS  PubMed  Google Scholar 

  39. Kuhad A, Chopra K (2009) Attenuation of diabetic nephropathy by tocotrienol: involvement of NFkB signaling pathway. Life Sci 84:296–301

    CAS  PubMed  Article  Google Scholar 

  40. Lee SH, Chun HK, Park HJ, Lee YS (2004) Supplementary effect of gamma-oryzanol on lipid metabolism in diabetic KK mice. Korean J Nutr 37:347–351

    CAS  Google Scholar 

  41. Lerma-Garcia MJ, Herrero-Martinez JM, Simo-Alfonso EF, Mendonca CRB, Ramis-Ramos G (2009) Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem 115:389–404

    CAS  Article  Google Scholar 

  42. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  43. Luo JZ, Luo L (2009) Ginseng on hyperglycemia: effects and mechanisms. Evid Based Complement Alternat Med 6:423–427

    PubMed Central  PubMed  Article  Google Scholar 

  44. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270

    CAS  PubMed  Article  Google Scholar 

  45. McBain AM, Brown IRF, Menzies DG, Campbell IW (1988) Effects of improved glycaemic control on calcium and magnesium homeostasis in type II diabetes. J Clin Pathol 41:933–935

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3179

    CAS  PubMed  Google Scholar 

  47. Moron MJ, Diperre JW, Mannerv KB (1979) Levels of glutathione, Glutathione reductase and Glutathione-S-Transferase activities in rat lungs and liver. Biochem Biophys Acta 582:67–71

    CAS  PubMed  Article  Google Scholar 

  48. Nasri H, Baradaran HR (2008) Lipids in association with serum magnesium in diabetes mellitus patients. Bratisl Lek Listy 109:302–306

    CAS  PubMed  Google Scholar 

  49. Nuyts GD, Yaqoob M, Nouwen EJ, Patric AW, McClelland P, Mac Farlane IA, Bell GM, Broe ME (1994) Human urinary intestinal alkaline phosphatase as an indicator of S3-segment-specific alterations in incipient diabetic nephropathy. Nephrol Dial Transplant 9:377–381

    CAS  PubMed  Google Scholar 

  50. Oh YK, Joo KW, Lee JW, Jeon US, Lim CS, Han JS, Knepper MA, Na KY (2007) Altered renal sodium transporter expression in an animal model of type 2 diabetes mellitus. J Korean Med Sci 22:1034–1041

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Ohara K, Uchida A, Nagasaka R, Ushio H, Ohshima T (2009) The effects of hydroxycinnamic acid derivatives on adiponectin secretion. Phytomedicine 16:130–137

    CAS  PubMed  Article  Google Scholar 

  52. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Article  Google Scholar 

  53. Ortiz A, Ziyadeh FN, Neilson EG (1997) Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J Investig Med 45:50–56

    CAS  PubMed  Google Scholar 

  54. Pacher P, Obrosova IG, Mabley JG, Szabó C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12:267–275

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812:719–731

    CAS  PubMed  Article  Google Scholar 

  56. Pawluczyk IZ, Harris KP (1997) Macrophages promote prosclerotic responses in cultured rat mesangial cells: a mechanism for the initiation of glomerulosclerosis. J Am Soc Nephrol 8:1525–1536

    CAS  PubMed  Google Scholar 

  57. Pennel JP, Meinking TL (1982) Pattern of urinary proteins in experimental diabetes. Kidney Int 21:709–713

    Article  Google Scholar 

  58. Prakasam A, Sethupathy S, Pugalendi KV (2004) Influence of Caseria esculenta root extraction on protein metabolism and marker enzymes in streptozotocin-induced diabetic rats. Pol J Pharmacol 56:587–593

    CAS  PubMed  Google Scholar 

  59. Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S (2006) Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin Exp Pharmacol Physiol 33:232–237

    CAS  PubMed  Article  Google Scholar 

  60. Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    PubMed  Article  Google Scholar 

  61. Richter C (1987) Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 44:175–189

    CAS  PubMed  Article  Google Scholar 

  62. Ruzaidi A, Amin AG, Nawalyah M, Hamid HA, Faizul HA (2005) The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats. J Ethnopharmacol 98:55–60

    CAS  PubMed  Article  Google Scholar 

  63. Saenjum C, Chaiyasut C, Chansakaow S, Suttajit M, Sirithunyalug B (2012) Antioxidant and anti-inflammatory activities of gamma-oryzanol rich extracts from Thai purple rice bran. J Med Plant Res 6:1070–1077

    CAS  Google Scholar 

  64. Saito M, Kinoshita Y, Satoh I, Shinbori C, Kono T, Hanada T, Uemasu J, Suzuki H, Yamada M, Satoh K (2006) N-hexacosanol ameliorates streptozotocin-induced diabetic rat nephropathy. Eur J Pharmacol 544:132–137

    CAS  PubMed  Article  Google Scholar 

  65. Sefi M, Fetoui H, Soudani N, Chtourou Y, Makni M, Zeghal N (2012) Artemisia campestris leaf extract alleviates early diabetic nephropathy in rats by inhibiting protein oxidation and nitric oxide end products. Pathol Res Pract 208:157–162

    PubMed  Article  Google Scholar 

  66. Shahid SM, Mahboob T (2008) Electrolytes and Na(+)-K(+)-ATPase: potential risk factors for the development of diabetic nephropathy. Pak J Pharm Sci 21:172–179

    CAS  PubMed  Google Scholar 

  67. Sharma A, Dabla S, Agrawal RP, Barjatya H, Kochar DK, Kothari RP (2007) Serum magnesium: an early predictor of course and complications of diabetes mellitus. J Indian Med Assoc 105:16–20

    PubMed  Google Scholar 

  68. Siddiqui S, Rashid Khan M, Siddiqui WA (2010) Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem Biol Interact 188:651–658

    CAS  PubMed  Article  Google Scholar 

  69. SJöquist M, Huang W, Johansson B (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764

    PubMed  Article  Google Scholar 

  70. Son MJ, Rico CW, Nam SH, Kang MY (2011) Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet. J Food Sci 76:H7–H10

    CAS  PubMed  Article  Google Scholar 

  71. Song M, Jeong G, Kwon K, Ka S, Jang H, Park J, Kim Y, Park B (2010) Sulfuretin protects against cytokine-induced β-cell damage and prevents streptozotocin-induced diabetes. Exp Mol Med 42:628–638

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  72. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  73. Stevens LA, Coresh J, Greene T, Andrew SL (2006) Assessing kidney function - measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    CAS  PubMed  Article  Google Scholar 

  74. Swanaton-Flat SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatment for diabetes; studies in normal and streptozotocin diabetic mice. Diabetologia 33:462–464

    Article  Google Scholar 

  75. Tanwar RS, Sharma SB, Singh UR, Prabhu KM (2010) Attenuation of renal dysfunction by anti-hyperglycemic compound isolated from fruit pulp of Eugenia jambolana in streptozotocin-induced diabetic rats. Indian J Biochem Biophys 47:83–89

    CAS  PubMed  Google Scholar 

  76. Tasaka Y (1999) Use of sulfonylurea (SU) in the treatment of diabetes mellitus. Nihon Rinsho 57:663–668

    CAS  PubMed  Google Scholar 

  77. Trevisan R, Dodesini AR, Lepore G (2006) Lipids and renal disease. J Am Soc Nephrol 17:S145–S147

    CAS  PubMed  Article  Google Scholar 

  78. Vedel P, Obel J, Nielsen FS (1996) Glomerular hyperfiltration in microalbuminuric NIDDM patients. Diabetologia 39:1584–1589

    CAS  PubMed  Article  Google Scholar 

  79. Wang C, Pan Y, Zhang QY, Wang FM, Kong LD (2012) Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One 7:e38285

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  80. Xu Z, Hua N, Godber JS (2001) Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride. J Agric Food Chem 49:2077–2081

    CAS  PubMed  Article  Google Scholar 

  81. Xue W, Lei J, Li X, Zhang R (2011) Trigonella foenum graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity. Nutr Res 31:555–562

    CAS  PubMed  Article  Google Scholar 

  82. Yamabe N, Yokozawa T, Oya T, Kim M (2006) Therapeutic potential of (−)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther 319:228–236

    CAS  PubMed  Article  Google Scholar 

  83. Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induced DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 294:284–286

    CAS  PubMed  Article  Google Scholar 

  84. Yousef WM, Omar AH, Ghanayem NM, Abd El-Wahed MM, Morsy MD (2005) Effect of some calcium channel blockers in experimentally induced diabetic nephropathy in rats. Int J Diabetes Metab 14:39–49

    Google Scholar 

  85. Zafar M, Naeem-Ul-Hassan Naqvi S, Ahmed M, Kaimkhani ZA (2009) Altered kidney morphology and enzymes in streptozotocin-induced diabetic rats. Int J Morphol 27:783–790

    Google Scholar 

  86. Zullaikah S, Melwita E, Ju YH (2009) Isolation of oryzanol from crude rice bran oil. Bioresour Technol 100:299–302

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Department of Science & Technology, New Delhi, India for providing financial assistance (INSPIRE Fellowship: JRF Professional) for carrying out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shital S. Panchal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghatak, S.B., Panchal, S.S. Renoprotective effects of oryzanol in an animal model of experimentally induced diabetic nephropathy. Orient Pharm Exp Med 14, 55–67 (2014). https://doi.org/10.1007/s13596-013-0119-1

Download citation

Keywords

  • Diabetic nephropathy
  • Hyperglycemia
  • Oxidative stress
  • Renal function
  • Oryzanol