Skip to main content

Advertisement

Log in

Study of clinically used and recently developed antimycobacterial agents

  • Review
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Tuberculosis is one of most pervasive, respiratory transmitted diseases and has spread to every corner of the globe. According World Health Organization report, as much as one-third of the world’s population is currently infected by tuberculosis. There has been considerable interest in the currently used antimycotubercular compounds to inhibit or prevent mycobacterium species. These mycobacterium species have developed resistant against currently used drugs and produced toxic effect on long duration of therapy. These agents have different structure and almost all compounds having heterocyclic ring having one and more than one heteroatoms. These observations have been guiding for the currently used and newly developed antitubercular agents that possess potent antimicrobial activity and their side effects, activity against multi drug resistance MDR, XDR mycobacterium, and also in patient co-infected with HIV/AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alangaden GJ, Lerner SA (1997) The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin Infect Dis 25:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Alangaden GJ, Manavathu EK, Vakulenko SB, Zvonok NM, Lerner SA (1995) Characterization of fluoroquinolone-resistant mutant strains of mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother 39:1700–1703

    PubMed  CAS  Google Scholar 

  • Alvirez-Freites EJ, Carter JL, Cynamon MH (2002) In vitro and in vivo activities of gatifloxacin against mycobacterium tuberculosis. Antimicrob Agents Chemother 46:1022–1025

    Article  PubMed  CAS  Google Scholar 

  • Amalio T, Michael I (2000) Drug-resistant tuberculosis: what do we do now? Drugs 59:171–179

    Article  Google Scholar 

  • Amaral L, Viveiros M, Molnar J (2004) Antimicrobial activity of phenothiazines. In Vivo 18:725–731

    PubMed  CAS  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in mycobacterium tuberculosis. Science 263:227–230

    Article  PubMed  CAS  Google Scholar 

  • Barry CE, Slayden RA, Sampson AE, Lee RE (2000) Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem Pharmacol 59:221–231

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JG, Dowell SF, Mandell LA, File TM Jr, Musher DM, Fine MJ (2000) Practice guidelines for the management of community-acquired pneumonia in adults. Infectious diseases society of America. Clin Infect Dis 31:347–382

    Article  PubMed  CAS  Google Scholar 

  • Berning SE (2001) The role of fluoroquinolones in tuberculosis today. Drugs 61:9–18

    Article  PubMed  CAS  Google Scholar 

  • Bozeman L, Burman W, Metchock B, Welch L, Weiner M (2005) Fluoroquinolone Susceptibility among Mycobacterium tuberculosis Isolates from the United States and Canada. Clin Infect Dis 40: 386–391

    Article  PubMed  CAS  Google Scholar 

  • Burman WJ, Goldberg S, Johnson JL, Muzanye G, Engle M, Mosher AW, Choudhri S, Daley CL, Munsiff SS, Zhao Z et al (2006) Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med 174:331–338

    Article  PubMed  CAS  Google Scholar 

  • Center for Disease Control (2006) “Emergence of Mycobacterium tuberculosis with Extensive Resistance to Second-Line Drugs—Worldwide, 2000–2004”, 55: 301–305

  • Cynamon MH, Alvirez-Freites E, Yeo AE (2004) BB-3497, a peptide deformylase inhibitor, is active against mycobacterium tuberculosis. J Antimicrob Chemother 53:403–405

    Article  PubMed  CAS  Google Scholar 

  • Cynamon MH, Sklaney M (2003) Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob Agents Chemother 47:2442–2444

    Article  PubMed  CAS  Google Scholar 

  • Cynamon MH, Klemens SP, Sharpe CA, Chase S (1999) Activities of several novel oxazolidinones against mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 43:1189–1191

    PubMed  CAS  Google Scholar 

  • Da Silva AD, De Almeida MV, De Souza MVN, Couri MRC (2003) Biological activity and synthetic methodologies for the preparation of fluoroquinolones, a class of potent antibacterial agents. Curr Med Chem 10:21–39

    Article  PubMed  Google Scholar 

  • Deidda D, Lampis G, Fioravanti R, Biava M, Porretta GC, Zanetti S, Pompei R (1998) Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic mycobacterium tuberculosis strains. Antimicrob Agents Chemother 42:3035–3037

    PubMed  CAS  Google Scholar 

  • Deniz SD, Tijen O, Semiha O, Selda OM, Fethi S (2008) Synthesis and antimicrobial activity of Some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives. Turk J Chem 32:469–479

    Google Scholar 

  • Dolezal M, Jampilek J, Osicka Z, Kunes J, Buchta V, Vichova P (2003) Substituted 5- aroylpyrazine-2-carboxylic acid derivatives: synthesis and biological activity. Il Farmaco 58:1105–1111

    Article  PubMed  CAS  Google Scholar 

  • Dony JF, Ahmad J, Khen TY (2004) Epidemiology of tuberculosis and leprosy, Sabah, Malaysia. Tuberculosis 84:8–18

    Article  PubMed  Google Scholar 

  • Douglas JD, Senior SJ, Morehouse C, Phetsukiri B, Campbell IB, Besra GS, Minnikin DE (2002) Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity. Microbiology 148:3101–3109

    PubMed  CAS  Google Scholar 

  • Elsayed KA, Bartyzel P, Shen XY, Perry TL, Zjawiony JK, Hamann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953

    Article  CAS  Google Scholar 

  • Espinal MA (2003) The global situation of MDR-TB. Tuberculosis 83:44–51

    Article  PubMed  Google Scholar 

  • Eustice DC, Feldman PA, Zajac I, Slee AM (1998) Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob Agents Chemother 32:1218–1222

    Google Scholar 

  • Field SK, Cowie RL (2003) Treatment of mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest 124:1482–1486

    Article  PubMed  CAS  Google Scholar 

  • Flamm RK, Vojtko C, Chu DT, Li Q, Beyer J, Hensey D, Ramer N, Clement JJ, Tanaka SK (1995) In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor. Antimicrob Agents Chemother 39:964–970

    PubMed  CAS  Google Scholar 

  • Ginsburg AS, Grosset JH, Bishai WR (2003a) Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 3:432–442

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg AS, Hooper N, Parrish N, Dooley KE, Dorman SE, Booth J, Diener-West M, Merz WG, Bishai WR, Sterling TR (2003b) Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis 37:1448–1452

    Article  PubMed  Google Scholar 

  • Ginsburg AS, Sun R, Calamita H, Scott CP, Bishai WR, Grosset JH (2005) Emergence of fluoroquinolone resistance in mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob Agents Chemother 49:3977–3979

    Article  PubMed  CAS  Google Scholar 

  • Global TB Alliance Annual report (2004–2005) http://www.tballiance.org/downloads/2005%20annual%20008_6b.pdf

  • Global Tuberculosis Control (2008) Surveillance, Planning, Financing WHO Report, 51–54

  • Grosset JH (1992) Treatment of tuberculosis in HIV infection. Tuber Lung Dis 73:378–383

    Article  PubMed  CAS  Google Scholar 

  • Grosset J, Truffot-Pernot C, Lacroix C, Ji B (1992) Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob Agents Chemother 36:548–551

    PubMed  CAS  Google Scholar 

  • Gundersen LL, Meyer JN, Spilsberg B (2002) Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J Med Chem 45:1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ, Rock CO (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs 5:146–153

    PubMed  CAS  Google Scholar 

  • Hirata T, Saito H, Tomioka H, Sato K, Jidoi J, Hosoe K, Hidaka T (1995) In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against mycobacterium tuberculosis. Antimicrob Agents Chemother 39:2295–2303

    PubMed  CAS  Google Scholar 

  • Hu Y, Coates AR, Mitchison DA (2003) Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of mycobacterium tuberculosis. Antimicrob Agents Chemother 47:653–657

    Article  PubMed  CAS  Google Scholar 

  • Islam M, Siddiqui AA, Rajesh R (2008) Synthesis, antitubercular, antifungal and antibacterial activities of 6-substituted phenyl-2-(3í-substituted phenyl pyridazin-6í-yl)-2,3,4,5-tetrahydropyridazin-3-one. Acta Pol Pharm Drug Res 65(4):441–447

    CAS  Google Scholar 

  • Jain R, Chen D, White RJ, Patel DV, Yuan Z (2005) Bacterial peptide deformylase inhibitors: a new class of antibacterial agents. Curr Med Chem 12:1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Jaso A, Zarrana B, Aldana I, Monge A (2005) Synthesis of new quinoxaline-2-carboxylate 1,4- dioxide derivatives as anti-mycobacterium tuberculosis agents. J Med Chem 48:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA (2000) A new class of antituberculosis agents. J Med Chem 43:3304–3314

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Ahmed SK, Reddy KS, Khan MNA, Shetty RVCRNC, Siddhardha B, Murthy USN, Khan IA, Kumar M, Sharma S, Ram AB (2007) Antitubercular agents. Part IV: synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorg Med Chem Lett 17:5419–5422

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Azeeza S, Shaheer MM, Shaik AA, Rao MV (2008) Efforts towards the development of new antitubercular agents: potential for thiolactomycin based compounds. J Pharm Pharm Sci 11(2):56s–80s

    PubMed  CAS  Google Scholar 

  • Kamal A, Babu AH, Ramana AV, Sinha R, Yadav JS, Arora SK (2005) Antitubercular agents. Part 1: synthesis of phthalimido- and naphthalimidolinked phenazines as new prototypeantitubercular agents. Bioorg Med Chem Lett 15:1923–1926

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Reddy KS, Ahmed SK, Khan MNA, Sinha RK, Yadav JS, Arora SK (2006) Anti-tubercular agents. Part 3: benzothiadiazines as a novel scaffold for anti-mycobacterim activity. Bioorg Med Chem 14:650–658

    Article  PubMed  CAS  Google Scholar 

  • Kelly BP, Furney SK, Jessen MT, Orme IM (1996) Low-dose aerosol infection model for testing drugs for efficacy against mycobacterium tuberculosis. Antimicrob Agents Chemother 40:2809–2812

    PubMed  CAS  Google Scholar 

  • Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, Tompkins NM, Rose JD, Reynolds RC, Orme IM (2005) Preclinical testing of the nitroimidazopyran PA-824 for activity against mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49:2294–2301

    Article  PubMed  CAS  Google Scholar 

  • Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr Rrna methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505

    Article  PubMed  CAS  Google Scholar 

  • Malinka W (2001) Synthesis of some pyrrolo[3,4-d]pyridazinones and their preliminary anticancer, antimycobacterial and CNS screening. Pharmazie 56(5):384–389

    PubMed  CAS  Google Scholar 

  • Management of MDR-TB (2009) A field guide A companion document to Guidelines for the programmatic management of drug-resistant tuberculosis. WHO/HTM/TB/2008.402, WHO Library Cataloguing-in-Publication Data: World Health Organization

  • Mayekar NA, Yathirajan SH, Narayana B, Sarojini BK, Suchetha KN (2010) Synthesis and antimicrobial studies on new substituted 1,3,4-oxadiazole derivatives bearing 6-bromonaphthalene moiety. Int J Chem 2(1):38–54

    CAS  Google Scholar 

  • McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    Article  PubMed  CAS  Google Scholar 

  • Mitscher LA, Baker W (1998) Tuberculosis: a search for novel therapy starting with natural products. Med Res Rev 18:363–374

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki E, Miyazaki M, Chen JM, Chaisson RE, Bishai WR (1999) Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 43:85–89

    Article  PubMed  CAS  Google Scholar 

  • Moghazeh SL, Pan XS, Arain TM, Stover CK, Musser JM (1996) Comparative antimycrobial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 40:2655–2657

    PubMed  CAS  Google Scholar 

  • Murugasu-Oei B, Dick T (2000) Bactericidal activity of nitrofurans against growing and dormant mycobacterium bovis BCG. J Antimicrob Chemother 46:917–919

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan K, Mazumder A, Ghosh LK (2008) Evaluation of antitubercular activity directly from versa trek myco bottles using Wrightia tomentosa alcoholic extracts. Pharmacologyonline 1:486–496

    Google Scholar 

  • Neu HC (1987) Clinical use of the quinolones. Lancet 2:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko BV, Samala R, Einck L, Nacy CA (2004) Rapid, simple in vivo screen for new drugs active against mycobacterium tuberculosis. Antimicrob Agents Chemother 48:4550–4555

    Article  PubMed  CAS  Google Scholar 

  • NITD Symposium on Tuberculosis, October 17–20 (2005) http://www.nitd.novartis.com/includes/teasers/teaser_attaches/tb_program_final.pdf

  • Nuermberger EL, Yoshimatsu T, Tyagi S, O'Brien RJ, Vernon AN, Chaisson RE, Bishai WR, Grosset JH (2004a) Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med 169:421–426

    Article  PubMed  Google Scholar 

  • Nuermberger EL, Yoshimatsu T, Tyagi S, Williams K, Rosenthal I, O'Brien RJ, Vernon AA, Chaisson RE, Bishai WR, Grosset JH (2004b) Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med 170:1131–1134

    Article  PubMed  Google Scholar 

  • Oishi H, Noto T, Sasaki H, Suzuki K, Hayashi T, Okazaki H, Ando K, Sawada M (1982) Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J Antibiot (Tokyo) 35:391–395

    Article  CAS  Google Scholar 

  • Okada M, Kobayashi K (2000) Recent progress in mycobacteriology. Kekkaku (Japanese Journal) 82(10):783–799

    Google Scholar 

  • Oleksijew A, Meulbroek J, Ewing P, Jarvis K, Mitten M, Paige L, Tovcimak A, Nukkula M, Chu D, Alder JD (1998) In vivo efficacy of ABT-255 against drug-sensitive and -resistant mycobacterium tuberculosis strains. Antimicrob Agents Chemother 42:2674–2677

    PubMed  CAS  Google Scholar 

  • Omar A, Ahmed MA (2008) Synthesis of some new 3H-quinazolin-4-one derivatives as potential antitubercular agents. World Appl Sci J 5(1):94–99

    Google Scholar 

  • Paramasivan CN, Sulochana S, Kubendiran G, Venkatesan P, Mitchison DA (2005) Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of mycobacterium tuberculosis. Antimicrob Agents Chemother 49:627–631

    Article  PubMed  CAS  Google Scholar 

  • Paris (2005) Lupin Limited, personal communication; Dr Federico Gomez de las Heras, GSK at TB Alliance stakeholder meeting

  • Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD (2004) Effect of noctanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J Antimicrob Chemother 54: 722–729

    Article  PubMed  CAS  Google Scholar 

  • Pasquato KFM, Ferreira EI (2001) An approach for the rational design of new antitubercular agents. Current Drug Targets 2:427–437

    Article  Google Scholar 

  • Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, Einck L, Nacy CA (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974

    Article  PubMed  CAS  Google Scholar 

  • Ragno R, Marshall GR, Di Santo R, Costi R, Massa S, Rompei R, Artico M (2000) Antimycobacterial pyrroles: synthesis, anti- mycobacterium tuberculosis activity and QSAR studies. Bioorg Med Chem 8:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Rieder HL, Arnadottir T, Trebucq A, Enarson DA (2001) Tuberculosis treatment: dangerous regimens? Int J Tubercul Lung Dis 5:1–3

    CAS  Google Scholar 

  • Rodriguez JC, Ruiz M, Climent A, Royo G (2001) In vitro activity of four fluoroquinolones against mycobacterium tuberculosis. Int J Antimicrob Agents 17:229–231

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Serrano MJ, Alcala L, Martinez L, Diaz M, Marin M, Gonzalez-Abad MJ, Bouza E (2000) In vitro activities of six fluoroquinolones against 250 clinical isolates of mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob Agents Chemother 44:2567–2568

    Article  PubMed  CAS  Google Scholar 

  • Schlunzen F, Pyetan E, Fucini P, Yonath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54:1287–1294

    Article  PubMed  Google Scholar 

  • Scozzafava A, Mastrolorenzo A, Supuran CT (2001) Antimycobacterial activity of 9-sulfonylated sulfenylated-6-mercaptopurine derivatives. Bioorg Med Chem Lett 11:1675–1678

    Article  PubMed  CAS  Google Scholar 

  • Shafii B, Amini M, Akbarzadeh T, Shafiee A (2008) Synthesis and antitubercular activity of N3, N5-diaryl-4-(5-arylisoxazol-3-yl)–1,4-dihydropyridine–3,5-dicarboxamide. J Sci 19(4):323–328

    CAS  Google Scholar 

  • Sharma V, Sharma S, Hoener zu Bentrup K, McKinney JD, Russell DG, Jacobs WR Jr, Sacchettini JC (2000) Structure of isocitrate lyase, a persistence factor of mycobacterium tuberculosis. Nat Struct Biol 7:663–668

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Ehrt S (2006) Dihydrolipoamide acyltransferase is critical for mycobacterium tuberculosis pathogenesis. Infect Immun 74:56–63

    Article  PubMed  CAS  Google Scholar 

  • Shindikar AV, Viswanathan CL (2005) Novel fluoroquinolones: design, synthesis, and in vivo activity in mice against mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 15:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Shoen CM, DeStefano MS, Cynamon MH (2000) Durable cure for tuberculosis: rifalazil in combination with isoniazid in a murine model of mycobacterium tuberculosis infection. Clin Infect Dis 30(Suppl 3):S288–S290

    Article  PubMed  CAS  Google Scholar 

  • Slayden RA, Barry CE (2002) The role of KasA andKasB in the biosynthesis of meromycolic acids and isoniazid resistance in mycobacterium tuberculosis. Tuberculosis 82:149–160

    Article  PubMed  CAS  Google Scholar 

  • Slayden RA, Lee RE, Armour JW, Cooper AM, Orme IM, Brennan PJ, Besra GS (1996) Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40:2813–2819

    PubMed  CAS  Google Scholar 

  • Stover CK, Warrener P, Vandevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, Mcmurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966

    Article  PubMed  CAS  Google Scholar 

  • Sulochana S, Rahman F, Paramasivan CN (2005) In vitro activity of fluoroquinolones against mycobacterium tuberculosis. J Chemother 17:169–173

    PubMed  CAS  Google Scholar 

  • Sun Z, Zhang Y (1999) Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber Lung Dis 79:319–320

    Article  PubMed  CAS  Google Scholar 

  • Surendra SB, Arya A, Sudhir KS, Vinita C, Rama PT (2010) Synthesis and antitubercular activity of 5-benzyl-3-phenyl dihydroisoxazole. Int J Drug Des Discov 1(1):11–18

    Google Scholar 

  • Tangalapally RP, Yendapally R, Lee RE, Lenaerts AJM, Lee RE (2005) Synthesis and evaluation of cyclic secondary amine substituted phenyl and benzyl Nitrofuranyl amides as novel antituberculosis agents. J Med Chem 48:8261–8269

    Article  Google Scholar 

  • Tangallapally RP, Yendapally R, Lee RE, Hevener K, Jones VC, Lenaerts AJ, McNeil MR, Wang Y, Franzblau S, Lee RE (2004) Synthesis and evaluation of nitrofuranylamides as novel antituberculosis agents. J Med Chem 47:5276–5283

    Article  PubMed  CAS  Google Scholar 

  • Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C (2005) Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859–868

    Article  PubMed  CAS  Google Scholar 

  • Tomioka H, Namba K (2006) Development of antitubercular drugs: current status and future prospects. Kekkaku (Japanese Journal) 81(12):753–774

    Google Scholar 

  • Tripathi RP, Tewari N, Dwivedi N, Tiwari VK (2005) Fighting tuberculosis: an old disease with new challenges. Med Res Rev 25:93–131

    Article  PubMed  CAS  Google Scholar 

  • Tsukamura M, Nakamura E, Yoshii S, Amano H (1985) Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis 131:352–356

    PubMed  CAS  Google Scholar 

  • Tucker JA, Allwine DA, Grega KC, Barbachyn MR, Klock JL, Adamski I, Brickner SJ, Hutchinson DK, Ford CW, Zurenko GE, Conradi A, Buston PS, Jensen RM (1998) Piperazinyl oxazolidinone antibacterial agents containing pyridine, diazene, or triazene heteroaromatic ring. J Med Chem 41:3727–3735

    Article  PubMed  CAS  Google Scholar 

  • World Health Organisation, Tuberculosis, Fact Sheet No. 104, 2007. http://www.who.int/mediacentre/factsheets/who104/en/index.html/

  • World Health Organization. Strategic framework to decrease the burden of TB/HIV documents WHO/CDS/TB. 2002, 296, WHO/HIVAIDS/2002, 2. Geneva, Switzerland: World Health Organization

  • Yew WW, Kwan SY, Ma WK, Lui KS, Suen HC (1990) Ofloxacin therapy of mycobacterium fortuitum infection: further experience. J Antimicrob Chemother 25:880–881

    Article  PubMed  CAS  Google Scholar 

  • Zanetti S, Sechi LA, Molicotti P, Cannas S, Bua A, Deriu A, Carta A, Paglietti G (2005) In vitro activity of new quinoxalin 1,4-dioxide derivatives against strains of mycobacterium tuberculosis and other mycobacteria. Int J Antimicrob Agents 25:179–181

    Article  PubMed  CAS  Google Scholar 

  • Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40:839–845

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asif, M. Study of clinically used and recently developed antimycobacterial agents. Orient Pharm Exp Med 12, 15–34 (2012). https://doi.org/10.1007/s13596-011-0020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-011-0020-8

Keywords

Navigation