Abstract
Key message
Radial growth in a group of Pinus radiata D. Don. trees varies in magnitude around the circumference and follows synchronous but arrhythmic dynamics.
Context
Eccentric and irregular girth growth is typically associated to specific growth responses, but it is generally assumed to be small or absent during normal development. The dynamics by which excess growth is formed are unclear.
Aims
The objective of this study is to determine if growth anisotropy is a commonly occurring phenomenon without apparent mechanical imbalance of the tree and to document the temporality of differential radial growth.
Methods
Six mature P. radiata trees were equipped with point dendrometers at different circumferential positions. Growth rates and periods of activity were monitored over 4 months.
Results
The highest growth differential on a single tree exceeded a factor of two. The direction of the highest growth varied between trees. In one case, that direction switched over time. The amount of anisotropy was explained by differences in the number of growing days and growth rate entropy.
Conclusion
Tree stem formation in fast-growing softwoods is a biological process characterized by high spatial heterogeneity and intermittent temporal activity.
Similar content being viewed by others
1 Introduction
Wood is a highly heterogeneous material. The degree of heterogeneity is a defining factor for the value and the performance of lignocellulosic materials that can be recovered from timber. Heterogeneity derives from the activity of the vascular cambium, a sheath of pluripotent cells responsible for wood formation in trees and shrubs. Cambial activity is known to be discontinuous in time and in space (Kozlowski and Pallardy 1996). New xylem cells are subject to internal and external controls that correspond to prevailing conditions at the time of formation. Once formed, the cells undergo programmed death, thus fixing them in a final state defining their geometry and physical characteristics. Variation in cambial activity is responsible for the spatial patterns of wood properties. As summarised by Larson (1969), ‘wood quality is the result, wood formation is the process.’ To understand how the spatial patterns arise, it is essential to know the history of growth velocity so that internal position can be linked back to the time it was formed. To that end, it is also important to determine if growth velocity itself varies spatially.
Radial growth can be anisotropic and display a direction-dependent magnitude. Differential growth activity around the circumference is typically associated to specific growth responses such as fluting (Julin et al. 1993), reaction wood (Timell 1986), or flexure wood (Telewski 1989) formation. Irregular cross-sectional shapes are common in coniferous tree stems. To the depressed stem regions correspond an increased rate of anticlinal divisions, possibly induced by local internal pressure in the cambial zone (Bannan 1957). More severe cases of circumferential variation can lead to the formation of discontinuous or fused growth rings (Larson 2012). Those may be found in less vigorous trees: senescing, heavily defoliated, or suppressed by competition (Kozlowski and Pallardy 1996). Knowledge is scarce about the potential occurrence of growth anisotropy in healthy trees under normal development. In addition, little is known about the dynamics of anisotropic growth when it occurs. It is often studied based on the ring structure of cross-sections, i.e. after losing the notion of time.
In temperate forests, trees exhibit growth periodicity associated to large-scale annual fluctuations in key environmental variables (daylength and temperature). Those fluctuations are the primary oscillations driving the intra-annual dynamics of radial growth. They are well documented and treated as normal development (Rossi et al. 2007; Cuny et al. 2014). The time variation of cumulated growth during the annual period generally follows a sigmoid function (Fritts 2012) but variation at shorter time scales may perturbate that main trend. Those secondary oscillations are typically episodes of reduced or interrupted radial growth. They may be observed during unfavourable environmental conditions such as drought-rain alternance (Larson 2012) or deficit in tree water storage (Zweifel et al. 2016), in relation to competition status (Drew and Downes 2018), phenology (Morel et al. 2015), or an internal redirection of resources during secondary flushes (Devine and Harrington 2009) or towards reproductive growth. Those sub-seasonal oscillations have been the subject of very few studies, but they indicate that cambial activity may be semi-discrete in time. It is also important to determine if those oscillations affect the cambial surface synchronously, as they would otherwise induce temporal dissociation in wood formation over the surface.
The measurement of spatial variability in radial growth dynamics introduces inevitable trade-offs. Measurement can be done well by attaching automated point dendrometers (Deslauriers et al. 2007; Drew and Downes 2009; De Swaef et al. 2015) at multiple positions on a tree stem (Zweifel et al. 2014). This method ensures a high time resolution although spatial resolution is limited to the number of sensors placed on the tree. It has been used in relation to wood quality (Bouriaud et al. 2005). The disadvantages of the method are that stem radial displacement (i) does not separate between alternate divisions towards phloem and xylem and (ii) does not capture the process of cell maturation (Cuny et al. 2015). Automated band dendrometers are unsuitable to describe the circumferential variation of growth as the measure of girth averages out any local growth differential in radial displacement. Pinning has been evaluated as a precise method to describe seasonal dynamics of wood formation (Mäkinen et al. 2008). Like the micro-coring technique, it can separate xylem from phloem growth increments. However, both methods do involve destructive sampling. The chronology of wood formation is built using samples collected at different positions on the cambial surface as a substitute for time, which is an approach confounding temporal effects with those due to shifting positions. An excellent alternative to multiple point dendrometers is laser scanning of stem surface. This non-contact method can provide detailed spatial maps of cambial kinetics (Dünisch and Rühmann 2006). The disadvantages of laser measurement are very specialized equipment, deployment in field conditions, and long-term monitoring.
The main research question addressed in this study is whether radial growth can be anisotropic during the seemingly normal development of mature forest conifers in a temperate climate. We test a key associate hypothesis that growth anisotropy does proceed, at least partly, from asynchronous growth dynamics. We also test if short-term (days to weeks) fluctuations of growth activity are present, and possibly coherent, in non-limiting environmental conditions.
2 Material and methods
2.1 Plant material and study site
Six Pinus radiata trees with distinct genotypes were studied. They were planted in 2001 in a clonal archive near the Scion nursery in Rotorua, North Island, NZ (176.269 long., − 38.156 lat., 300 m a.s.l.). Initial stocking was equal to 1000 stems ha−1. They were selected after visual assessment for straightness and lack of severe fluting. They covered a broad range of diameter at breast height (20–55 cm, see Table 1). Soil at the study site is documented as loam over sandy loam, deep (> 1 m), and well drained, with high permeability (> 72 mm h−1) and high available water capacity (AWC > 160 mm for 0–100 cm layer) in the national S-map database (smap.landcareresearch.co.nz/, Lilburne et al. (2012)). Annual rainfall (July 2017–June 2018) was 1638 mm and mean annual temperature was 12.2 °C (MetService Rotorua airport station).
2.2 Monitoring of stem radial displacement
Dendrometers were mounted at breast height in three different configurations. Three trees, referred to as P1, P2, and P3, had a proximal sensor configuration. On each tree, two dendrometers were positioned 10 cm apart tangentially on either side of the north direction (referred to as NE and NW). Two trees, O1 and O2, were set with a pair of dendrometers, each on an opposite side of the stem, one facing north (N) and the other facing south (S). The last tree, labelled Q, was set up in a quadrant configuration with four dendrometers (Sellier and Ségura 2020). Each of them was oriented along a cardinal direction. The metal frames on which sensors were mounted have been fixed to the tree at a slight angle from vertical to minimize the disruption of sap flow at the point of measurement.
Two types of point dendrometers were used in this study. Linear variable differential transformers (Bestech, Australia) and linear variable potentiometers (LM10, Radiospares, UK) have been inter-calibrated before the experiment using a custom-built 3D-printed scale. The design of the scale permitted to convert raw millivolt signal to a physical displacement along the travel of the dendrometer. To avoid any problem of linearity, we kept a security margin of 10% at both extreme positions of the point of dendrometer. In that case, both technologies presented a linear electrical response, respectively (1.2152–1.3393 mm/V) for LVDT and (0.4732–0.4864 mm/V) for LM10. Sensor output was scanned every 30 s by two dataloggers (CR800, Campbell Scientific, USA) equipped with multiplexors and the 5-min mean value was recorded. The experiment lasted from December 22, 2017, to April 28, 2018.
2.3 Environmental data
Environmental data was collected by a weather station (CR3000, Campbell Scientific, USA) in an open site 200 m away from the studied trees. High-quality research-grade sensors recorded the following variables: air temperature (°C, 2 m above ground level), relative humidity (%), soil water potential (SWP, kPa, at 10, 20, and 30 cm depth), photosynthetically active radiation (PAR, MJ m−2), rainfall (mm), and wind speed (m s−1). All variables were recorded every 15 min except soil potential every 1 h. Vapour pressure deficit (VPD) was calculated from air temperature and relative humidity using the Tetens equation.
2.4 Data processing and analysis
Time series of stem radial displacement were processed for analysis. The processing steps consisted of (i) converting voltage to radial displacement, (ii) resampling the series to a regular time interval, (iii) correcting for large jumps in displacement such as caused by re-positioning or a voltage drop, (iv) compensating for the thermal expansion of both sensor and mounting frame (1 μm/°C), and (v) offsetting the series so that the initial displacement is zero. Signal processing was done using Python version 3.7 (Python Software Foundation, http://www.python.org) and the pandas library (McKinney 2010). After processing, stem radial displacement was split into growth (GRO) and stem water deficit (SWD). The value of GRO at any time is the maximum of either current displacement value or previous GRO value. The definition is based on the Zero Growth concept (Zweifel et al. 2016). Daily increments were calculated as the successive differences of GRO at midnight. The SWD component was calculated by subtracting the GRO component from stem radial displacement series. Daily SWD values are the daily maximum. Two generalized additive mixed models (GAMM) were used to evaluate environmental forcing of GRO and SWD, respectively. Fixed effects were represented by the daily mean of each environmental variable except air temperature (daily minimum). Tree and direction were treated as random effects. The GAMM analysis was done using R 3.6.1 (R Core Team 2019) and the mgcv package (Wood and Wood 2015).
Growth anisotropy between two circumferential positions was defined by the ratio of total growth between the position with greater growth to that with lower growth. A linear model of anisotropy was created using R 4.0.0 and selected as the model with the lowest Akaike Information Criterion. Five potential predictors were considered:
-
The distance between sensors.
-
The relative difference of activity between locations, where activity is the number of days when the growth rate is not zero.
-
The relative difference in vigour, where vigour is the total growth achieved over the number of growing days.
-
Concurrency is a simple measure of synchrony. It is defined as the fraction of the monitoring period during which the growth rate is zero or non-zero for all sensors on a stem at once.
-
Cross-sample entropy (Richman and Moorman 2000) is an elaborate measure of asynchrony. It characterizes the degree of coupling and complexity between two time series. Entropy was calculated with a custom R function for a 2-day scale and a 7-day scale. Because of the collinearity between both, only the 2-day scale results were used.
The relative importance of predictors was evaluated using the relaimpo package and the lmg method (Grömping 2006).
3 Results
3.1 Radial growth anisotropy
Figure 1 shows the stem radial displacement of the six studied trees. All trees but tree P3 displayed a favoured growth direction. Four sensors on four different stems measured a growth increment greater than 3.5 mm, equivalent to a 10 mm year−1 mean radial growth rate. The main growth direction varied among the trees: north for tree O1, south for tree O2, east for tree Q, and north-northwest for tree P1. Importantly, the favoured direction in the case of tree P1 switched at the end of summer. The north-northeast orientation was initially favoured for two-thirds of the monitored period. It indicates that excess growth in one direction is a time-dependent feature and not only a local amplification of growth magnitude. Similarly, the radial increment measured for the sensor Q-E started to exceed that of other directions from mid-February onwards. For many sensors that measured a lower growth increment (c. 2 mm), the growth loss was apparently caused by a slow down after mid-February. As an exception to this trend, little growth was measured on O1-S until mid-February and became pronounced afterwards. In that case, the initial delay was responsible for the relative lack of growth on the south side of the stem.
The radial growth ratio between two different points on the same tree stem is above 1.25 at the majority (8 out of 11) of position pairs that were monitored (Fig. 2). While the highest recorded ratios were measured in sensor pairs placed on opposite sides of the stem (O1-N/S and Q-E/W), there is no clear relationship between the anisotropic ratio and the circumferential distance between sensors (Fig. 2). Remarkably, some of the sensors positioned 10 cm apart in a similar direction (P1-NW/NE and P2-NW/NE) presented a large growth differential despite the proximity. This indicates that anisotropy occurs over small spatial scales too.
Growth activity was extremely variable between and within trees: it ranged from 26 to 81% of the entire monitoring period. Only half the sensors recorded growth for more than half the period. As a trend, radial growth increased with the number of growing days, but deviation from the trend could be pronounced (Fig. 3). For instance, the growth increment for Q-N, equal to 3.6 mm, was produced in 75 days while similar radial growth took 28 more days to produce at P1-NW. Tree stem positions that displayed moderate growth levels also showed a broad-ranging activity. In the case of Q-N, it took almost twice as many growing days as P1-NE (83 vs. 46) to produce a similar amount of growth (2.16 vs. 2.41). This led us to define the active growth rate (in relation to the number of growing days instead of total) to represent the vigour of radial growth at a stem location. There is also a general trend of total growth increasing with vigour with large deviations from the trend, either with moderately vigorous positions achieving high growth (e.g. O1-N) or with vigorous positions achieving average growth levels (e.g. Q-N).
It was found that the degree of growth anisotropy between two circumferential locations was best predicted using the relative difference in activity between those positions, and the cross-sample entropy of the daily growth rate time series in a linear model (F = 9.9 on 2 and 8 degrees of freedom, p = 0.007, adjusted r2 = 0.64). The relative contribution of each predictor was similar: 52.5% for activity and 47.5% for entropy. Other characteristics of the growth responses such as the relative difference in vigour, the circumferential distance separating the sensors, and asynchrony were poor predictors of anisotropy.
3.2 Sub-seasonal growth rhythms
The daily growth rates measured at all positions exhibited a strong variability (Fig. 4). The standard deviation represented from 0.99 to 2.29 times the mean growth rate depending on the position. A key aspect was that growth occurred by sequences of activity followed by episodes of no measured growth. Those episodes lasted up to a month in the worst case. There were phases when nearly all monitored positions grew at once: early January, mid-February, late March, and mid-April. There were also phases when no growth was recorded at all positions, e.g. late December or late April. Both phase types are referred to as group growth and group deficit, respectively. Between those phases, radial growth was measured only for a fraction of the locations and not necessarily the same ones. It is referred to as individual growth as it appeared specific to each location. The frequent interruption of growth caused adjacent radial position to be formed at different times, up to a month (Fig. 5). Conversely, large amounts of seasonal growth (up to 1 mm) could be produced in a week’s time.
Radial growth dynamics were well correlated within and between trees (Fig. 6). The best correlation was always obtained without delay, which indicates growth activity was synchronous overall. This must be nuanced by the fact that concurrency for each tree ranged from 60 to 87%. For up to a third of the monitored period, one stem position grew while another did not. Whereas correlation between two growth rate series was generally higher between different positions of a given tree, it could also be higher across trees (e.g. r = 0.92 for P1-NE and Q-E) than on the same tree (r = 0.6 for P1-NE and P1-NW).
Analysis of the time series of growth rate in the frequency domain revealed no main rhythm in growth activity (Fig. 7). No frequency peak was observed in the power spectra. However, the spectra showed a marked inflection at a characteristic period of 3–4 days. The amount of growth increased rapidly for periods up to 3 days. It kept increasing with period length for longer periods longer but more slowly. This is likely caused by the occurrence of growth interruptions during those longer periods. The successive differences in daily growth rate, excluding phases of inactivity, followed a random normal distribution (Fig. 9 in the Appendix). This further supports the absence of a coherent pattern in growth rate variability.
3.3 Environmental forcing
Figure 8 shows the daily growth rates and SWD at two positions on different trees. Both the growth and deficit signals have a distinct temporal signature on each tree. The position O1-S showed a lot of activity for the second half of the monitoring period whereas that episode was absent at position Q-N. The situation was reversed for the first half of the monitoring period, with active growth recorded for Q-N while very little activity was noted for O1-S. We refer to periods of activity like these as periods of individual growth as they appear specific to the position of observation. Despite differences, both positions also grew concurrently at other times, along with nearly all other positions. We refer to those as windows of group growth. Group growth was typically associated with rain events (Fig. 8) although not all rain events induced group growth. It also occurred when VPD was very low (< 0.1 kPa). Group deficit was slightly more common than group growth. It also followed rain events when soil water potential dropped well below water holding capacity. It also co-occurred with drops in daily minimum temperature.
The correlation between growth rate and environmental variables were weak overall (Fig. 5). Most growth signals were significantly (p < 0.01) and negatively correlated with VPD and PAR without a lag. Growth occurred preferentially on humid, low-radiation days. When growth was not correlated with VPD, it was correlated with soil water potential (SWP) instead. Environmental variables explained 43.6% of the deviance in the GAMM of growth rate (adjusted r2 = 0.42; see Table 2 in the Appendix).
4 Discussion
4.1 Radial growth varies circumferentially
In this study, the circumferential variation of radial growth was large. The growth rate differential measured on the different trees ranged from 7 to 113%. The observed anisotropy could be explained by the formation of compression wood (CW), which increases growth on the compressed side of a leaning tree (Wilson and Archer 1977; Timell 1986) and decreases it on the opposite side (Pallardy 2008). Although none of the studied trees showed any lean, CW formation cannot be ruled out. CW can also form in vertical tree stems (Telewski 2006) to generate growth stresses to correct an imbalance in mechanical loading induced, for example, by an asymmetrical distribution of crown weight (Archer 2013). The studied trees were in a stand that was thinned. It created small canopy gaps and a heterogeneous light environment that could lead to asymmetrical crown development and a CW response. It is the most likely explanation for the observed growth anisotropy. A response driven by the local light regime would be consistent with the direction of anisotropy varying between individuals. The dominant wind can also induce CW (Robertson 1990) but is unlikely to be the causative factor in this study. Otherwise, CW and eccentric growth would occur in the same direction for all trees, that of the dominant wind, and that was not the case. Without histological analysis, it is not possible to assert whether CW formed.
Although the underlying cause of anisotropy has not been identified, it was found to be associated with specific temporal features. The difference of growth duration combined with the lack of similarity in the temporal sequences of growth activity was found to be characteristic traits defining the growth differentials between two positions on a stem. Neither aspect alone was sufficient as both factors contributed equally. On the other hand, anisotropy was not explained by more vigorous growth at one location at the expense of another, nor by physical separation between positions as was expected. This highlights further the need to monitor the development of anisotropy in real time as opposed to analysing the final shape of growth rings.
4.2 Radial growth is synchronous (most of the time)
Excess growth did not originate from completely different dynamics. Growth activity was found to be generally synchronous for all stem positions. The time series of daily growth rate were well correlated both between trees and within a tree. The best correlation was always observed without lag. Growth synchronization has been reported both at multiple heights in a single tree (Bouriaud et al. 2005; Zweifel et al. 2014) and in different trees (van der Maaten et al. 2013). The latter study refers to synchronization with meteorological drivers, however, and emphasizes the significance of inter-tree variability of growth. The difference of radial growth dynamics between individuals can also be significant between size classes (Wunder et al. 2013).
Although present, synchronization was partial. At tree level, a position was actively growing while another position was not growing typically 25% of the time. In that respect, each position had distinct segments of activity. Those segments occurred in-between several key periods where nearly all stem positions grew or stopped growing together. In summary, any growth response appeared to share both coherent sequences and sequences with an individual signature. The coherent sequences were instrumental to anchor all growth signals on the time axis and to synchronize them. Synchronicity does not imply that the cambium reactivates or enters dormancy at similar times on different trees. Onset and cessation of cambial activity vary with species and tree size and status (Rathgeber et al. 2011; Michelot et al. 2012). Yet, it seems that from the moment the cambium is active, it is subject to global influences captured by all individuals.
4.3 Environmental forcing (and its limits)
Radial growth is a process known for being under strong environmental control (Gruber et al. 2009; Köcher et al. 2012). Automatic dendrometers are a key in investigating short-term growth responses to the environment (Drew and Downes 2009) and, in general, tree-environment interactions (Cocozza et al. 2018). Several meteorological and soil variables drive important physiological processes. Solar radiation limits the amount of sugars photosynthesized by leaves. Those are critical for osmotic regulation and cell wall formation. Both soil and atmospheric water (SWP and VPD) impact xylem’s water potential, stomatal conductance, cell turgor, and growth. Temperature plays an important role in biochemical processes and reaction rates (Gillooly et al. 2001). It has a measurable effect on cellular processes such as mitosis (Vaganov et al. 2006). Disentangling the respective influences of environmental factors can be difficult as they interact with each other. Despite that difficulty, the physical environment is the prime candidate for inducing a shared response in a group of trees (van der Maaten et al. 2013).
In this study, air temperature affected growth rates in only half the stem positions. Only the minimum daily temperature was important, which is consistent with growth mostly occurring at night. Water availability also affected growth either via rainfall (Trees Q and P3) or soil water potential (Trees O1 and O2). Both aspects should be linked, as SWP would increase after a rain event. The relative sensitivities of each tree could be due to their genotype. Growth and VPD were also often correlated but weakly. The GAMM analysis also showed a nonlinear relationship between growth and VPD. High VPD levels would reduce growth because of the elevated evapotranspirative demand. In isohydric species such as P. radiata, excessive transpiration induces stomatal closure (Rodríguez-Gamir et al. 2019), which interrupts the absorption of carbon dioxide. It can restrict growth directly by limiting the levels of assimilates used for manufacturing structural carbohydrates in the developing cell wall. It can also restrict radial growth by failing to maintain the osmotic potential and turgor in enlarging xylem cells. Because PAR is well correlated to VPD, we observed the counter-intuitive situation where growth was higher on days of low ambient light. A negative relationship between PAR and stem radius variation has been reported but attributed to changes of stem water content rather than growth (van der Maaten et al. 2013). In this study, PAR was associated to growth. However, the association was not widespread. It was only significant for a few stem positions. It is also worth noting that PAR exceeded saturating light levels only on 17 days at mid-day. Even in non-saturating conditions, PAR was the least growth-limiting of all environmental factors. It may be related to the particularities of the photosynthetic system of P. radiata.
4.4 Arrhythmicity
Approximately half the stem positions were subjected to a long (2 weeks or longer) deficit period in addition to the typical intermittent response described above. A long deficit period with markedly low SWD values is associated with a depletion of stem water storage and a decrease in soil water potential (Zweifel et al. 2001). It is unclear why long-term deficit occurred at some stem positions and not at others, sometimes on the same tree. Difference between trees could be explained by differences of genotype, micro-climate, soil variability, and tree social status. However, those aspects do not explain the variation in SWD responses within a single tree. Intra-tree variation must relate to a heterogeneous distribution of water and growth substances around the circumference. A highly uneven distribution of cohesive water in stem cross-sections has been documented (Westhoff et al. 2009). Local variation in water (and carbohydrates) would affect osmotic potential and water potential in and around the bark tissues. It could explain why some regions are under stress while other are not. It would also explain local differences in cambial activity. The uneven supply of water and carbohydrates must proceed from sectorial transport of those substances. The very limited amount of transport in the tangential direction has been shown separately for both xylem and phloem using dyes (Kozlowski et al. 1967; Larson et al. 1994) and isotope tracers (Orians et al. 2004; Kagawa et al. 2005; De Schepper et al. 2013).
Another confounding aspect of long-term deficit is that it occurred at different times. Some positions entered long-term deficit early in the monitored period, then recovered and returned to baseline activity. Other positions first followed baseline activity but exhibited long-term deficit at a later stage. It is difficult to reconcile that a stem position can be susceptible to water stress and have partially depleted water reserves on any month yet remain relatively well hydrated the next month despite similar rain/soil water conditions. Those changes of sensitivity to stress over time could be linked to the seasonal allocation patterns and the dynamic reconfiguration of phloem connections (Kagawa et al. 2005). It could also result from changing conditions at either end of the hydraulic pathways (foliage and fine roots) propagating down to the connected stem region. Those aspects are still poorly characterized.
We observed that growth operated as a semi-discrete process repeatedly interrupted by short-term periods of inactivity. Some of those episodes were associated with night-time residual stem shrinkage, which is a common marker of water stress (Zweifel et al. 2001; Zweifel et al. 2016). It appears as if those mild water stress events interrupted the main rhythm of radial growth. This intermittent behaviour was present on all trees in any direction. However, soil water potential, soil available water capacity, the frequency, and amount of precipitation were all representative of a mesic environment. There is no indication of drought conditions during the summer the study took place. It is likely that many episodes with slightly negative SWD values were only lack of growth; those episodes were caused by a set of conditions temporarily unconducive to xylem cell production or expansion. Only the rare phases with markedly negative SWD values were possibly indicating an actual depletion of stem water reserves. Altogether, it seems that trees growing in a mild temperate climate such as the North Island of New Zealand are not subject to a single environmental constraint, thus making it difficult to parse the nature of environmental control. Alternately, it is possible that for fast-growing temperate forests, as for tropical forests, the role of endogenous control in growth periodicity (Alvim 1964) becomes prevalent.
5 Conclusion
In five out of six trees, the growth differential around the circumference was not negligible and could exceed a factor of two. The variation was pronounced even over short distances. Circumferential variation was not limited to magnitude. It also affected dynamics or, perhaps, growth dynamics were responsible for anisotropy. A larger number of trees each equipped with more sensors will be essential to assess the extent of anisotropy taking place during wood formation. It will be invaluable to quantify the amount of intra-tree variability compared to inter-tree variability, a better-known aspect. Despite the direct role of environmental influences on cambial growth regulation, future studies would benefit to focus on characterizing physiological variables and internal transport processes to elucidate the causative factors of anisotropy and growth temporality.
Data availability
The datasets generated during and/or analysed during the current study are available in the Knowledge Network for Biocomplexity repository, https://knb.ecoinformatics.org/view/doi:10.5063/F1Z60MFG
References
Alvim PT (1964) Tree growth periodicity in tropical climates. In: Zimmermannn MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 479–495
Archer RR (2013) Growth stresses and strains in trees. Media, Springer Science & Business
Bannan M (1957) Girth increase in white cedar stems of irregular form. Can J Bot 35:425–434
Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660
Cocozza C, Tognetti R, Giovannelli A (2018) High-resolution analytical approach to describe the sensitivity of tree–environment dependences through stem radial variation. Forests 9:134
Core Team R (2019) R: a language and environment for statistical computing. Austria, Vienna
Cuny HE, Rathgeber CB, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241
Cuny HE, Rathgeber CB, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, Del Castillo EM, Campelo F, Vavrčík H (2015) Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants 1:15160
De Schepper V, Bühler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K (2013) 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front Plant Sci 4:200
De Swaef T, De Schepper V, Vandegehuchte MW, Steppe K (2015) Stem diameter variations as a versatile research tool in ecophysiology. Tree Physiol 35:1047–1061
Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124
Devine WD, Harrington CA (2009) Relationships among foliar phenology, radial growth rate, and xylem density in a young Douglas-fir plantation. Wood Fiber Sci 41:300–312
Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27:159–172
Drew DM, Downes GM (2018) Growth at the microscale: long term thinning effects on patterns and timing of intra-annual stem increment in radiata pine. Forest Ecosystems 5:32
Dünisch O, Rühmann O (2006) Kinetics of cell formation and growth stresses in the secondary xylem of Swietenia mahagoni (L.) Jacq. and Khaya ivorensis A. Chev.(Meliaceae). In: Wood Science and Technology, pp 40–49
Fritts H (2012) Tree rings and climate. Elsevier
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251
Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17:1–27
Gruber A, Zimmermann J, Wieser G, Oberhuber W (2009) Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann For Sci 66:503–503
Julin KR, Shaw CG III, Farr WA, Hinckley TM (1993) The fluted western hemlock of Alaska. I. Morphological studies and experiments. For Ecol Manag 60:119–132
Kagawa A, Sugimoto A, Yamashita K, Abe H (2005) Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant Cell Environ 28:906–915
Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032
Kozlowski TT, Pallardy SG (1996) Physiology of woody plants. Elsevier
Kozlowski T, Hughes J, Leyton L (1967) Movement of injected dyes in gymnosperm stems in relation to tracheid alignment. Forestry: An International Journal of Forest Research 40:207–219
Larson PR (1969) Wood formation and the concept of wood quality. Bulletin no 74 New Haven, CT: Yale University, School of Forestry 54 p:1-54
Larson PR (2012) The vascular cambium: development and structure. Springer Science & Business Media
Larson DW, Doubt J, Matthes-Sears U (1994) Radially sectored hydraulic pathways in the xylem of Thuja occidentalis as revealed by the use of dyes. Int J Plant Sci 155:569–582
Lilburne L, Hewitt A, Webb T (2012) Soil and informatics science combine to develop S-map: a new generation soil information system for New Zealand. Geoderma 170:232–238
Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245
McKinney W (2010) Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference. Austin, TX, pp. 51-56
Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045
Morel H, Mangenet T, Beauchêne J, Ruelle J, Nicolini E, Heuret P, Thibaut B (2015) Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees 29:973–984
Orians CM, van Vuuren MMI, Harris NL, Babst BA, Ellmore GS (2004) Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, 15N transport, and vessel element pitting. Trees 18:501–509
Pallardy SG (2008) Vegetative growth. In: Pallardy SG (ed) Physiology of woody plants, Third edn. Academic Press, San Diego, pp 39–86
Rathgeber CBK, Rossi S, Bontemps J-D (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438
Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278:H2039–H2049
Robertson A (1990) Directionality of compression wood in balsam fir wave forest trees. Can J For Res 20:1143–1148
Rodríguez-Gamir J, Xue J, Clearwater MJ, Meason DF, Clinton PW, Domec JC (2019) Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant Cell Environ 42:717–729
Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12
Sellier D and Ségura R (2020) Stem radial growth dynamics and anisotropy in Pinus radiata trees (Dec-Apr 2018, Rotorua, New Zealand). urn:node:KNB. Knowledge Network for Biocomplexity repository. [Dataset]. V1. https://doi.org/10.5063/F1Z60MFG
Telewski F (1989) Structure and function of flexure wood in Abies fraseri. Tree Physiol 5:113–121
Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476
Timell TE (1986) Compression wood in gymnosperms. Springer-Verlag, Berlin Heidelberg
Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings: images of past and future environments. Springer Science & Business Media
van der Maaten E, Bouriaud O, van der Maaten-Theunissen M, Mayer H, Spiecker H (2013) Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley. Agric For Meteorol 181:85–93
Westhoff M, Zimmermann D, Schneider H, Wegner L, Geßner P, Jakob P, Bamberg E, Shirley S, Bentrup FW, Zimmermann U (2009) Evidence for discontinuous water columns in the xylem conduit of tall birch trees. Plant Biol 11:307–327
Wilson BF, Archer RR (1977) Reaction wood: induction and mechanical action. Annu Rev Plant Physiol 28:23–43
Wood S, MS Wood (2015) Package ‘mgcv’. R package version 1:29
Wunder J, Fowler AM, Cook ER, Pirie M, McCloskey SP (2013) On the influence of tree size on the climate–growth relationship of New Zealand kauri (Agathis australis): insights from annual, monthly and daily growth patterns. Trees 27:937–948
Zweifel R, Item H, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877
Zweifel R, Drew DM, Schweingruber F, Downes GM (2014) Xylem as the main origin of stem radius changes in Eucalyptus. Funct Plant Biol 41:520–534
Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol 211:839–849
Acknowledgements
We thank the following Scion personnel for their assistance in setting up the experiment on the site: Les Dowling, Vanessa Cotterill, Alex Manig, Jairus Wano. We thank Toby Stovold for providing information about the genetic archive, and Michelle Harnett, Gancho Slavov, Jaroslav Klapste, Elspeth MacRae, and Didier Bert for comments and valuable suggestions on earlier versions of this manuscript. We also thank two anonymous reviewers for suggesting helpful revisions and, finally, Marine Duperat for her staunch defence of homoscedasticity.
Funding
The long-term visit of Raphaël Ségura at Scion, Rotorua was gratefully supported by INRAE. The study was funded by the ‘Growing Confidence in Future Forests’ research programme (C04X1306) which was jointly funded by the Ministry of Business, Innovation, and Employment and the Forest Growers Levy Trust.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Cyrille B. K. Rathgeber
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contribution of the co-authors
DS co-designed the experiment, processed and analysed the data, and wrote the manuscript. RS co-designed the experiment, supervised the installation and the maintenance of the experimental setup, and edited the manuscript.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Sellier, D., Ségura, R. Radial growth anisotropy and temporality in fast-growing temperate conifers. Annals of Forest Science 77, 85 (2020). https://doi.org/10.1007/s13595-020-00991-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13595-020-00991-9