Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest


Key message

Using a combination of remote sensing data, Pinus pinaster Ait. and Pinus pinea L. were distinguished at individual tree level in mixed Mediterranean stands with over 95% accuracy. This approach is easily applicable over large areas, enhancing the economic value of non-wood forest products, stone pine nuts, and resin, and aiding forest managers to accurately predict this production.


The discrimination of tree species at individual level in mixed Mediterranean forest based on remote sensing is a field which has gained greater importance. In these stands, the capacity to predict the quality and quantity of non-wood forest products is particularly important due to the very different goods the two species produce.


To assess the potential of using low-density airborne LiDAR data combined with high-resolution Pleiades images to discriminate two different pine species in mixed Mediterranean forest (Pinus pinea L. and Pinus pinaster Ait.) at individual tree level.


A Random Forest model was trained using plots from the pure stand dataset, determining which LiDAR and satellite variables allow us to obtain better discrimination between groups. The model constructed was then validated by classifying individuals in an independent set of pure and mixed stands.


The model combining LiDAR and Pleiades data provided greater accuracy (83.3% and 63% in pure and mixed validation stands, respectively) than the models which only use one type of covariables.


The automatic crown delineation tool developed allows two very similar species in mixed Mediterranean conifer forest to be discriminated using continuous spatial information at the surface: Pleiades images and open source LiDAR data. This approach is easily applicable over large areas, enhancing the economic value of non-wood forest products and aiding forest managers to accurately predict production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

A dataset generated with the coordinates and the species of each tree measured is available in FigShare repository (Blázquez-Casado et al. 2019) at https://doi.org/10.6084/m9.figshare.7951166.v2


  1. Alonso FJG, González GM, Sánchez LG (2012) La problemática de la regeneración natural de los pinares en los arenales de la Meseta Castellana. In La regeneración natural de los pinares en los arenales de la Meseta Castellana. Instituto Universitario de Investigación en Gestión Forestal Sostenible, pp 11–16

  2. Arias-Rodil M, Diéguez-Aranda U, Álvarez-González JG, Pérez-Cruzado C, Castedo-Dorado F, González-Ferreiro E (2018) Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann For Sci 75:36. https://doi.org/10.1007/s13595-018-0712-z

  3. Ballanti L, Blesius L, Hines E, Kruse B (2016) Tree species classification using hyperspectral imagery: a comparison of two classifiers. Remote Sens 8:1–18. https://doi.org/10.3390/rs8060445

  4. Barba J, Curiel Yuste J, Martínez-Vilalta J, Lloret F (2013) Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For Ecol Manag 306:79–87. https://doi.org/10.1016/j.foreco.2013.06.025

  5. Barrett F, McRoberts RE, Tomppo E et al (2016) A questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Remote Sens Environ 174:279–289. https://doi.org/10.1016/j.rse.2015.08.029

  6. Beguet B, Chehata N, Boukir S, et al (2014) Classification of forest structure using very high resolution Pleiades image texture. Geosci Remote Sens Symp (IGARSS), 2014 IEEE Int 2324–2327. doi: https://doi.org/10.1109/IGARSS.2014.6946936

  7. Blázquez-Casado A, Calama R, Valbuena M, Rodriguez F (2019) Trees.V2. FigShare. [Dataset]. https://doi.org/10.6084/m9.figshare.7951166.v2

  8. Bravo-Oviedo A, Gallardo-Andrés C, del Río M, Montero G (2010) Regional changes of Pinus pinaster site index in Spain using a climate-based dominant height model. Can J For Res 40:2036–2048. https://doi.org/10.1139/X10-143

  9. Breiman L, Friedman J, Olshen R, Stone C (2001) Classification and regression trees. Chapman Hall, New York

  10. Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manag 255:660–673. https://doi.org/10.1016/j.foreco.2007.09.079

  11. Calama R, Gordo J, Madrigal G, Mutke S, Conde M, Montero G, Pardos M (2016) Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in inner Spain. For Syst 25. https://doi.org/10.5424/fs/2016253-09671

  12. Castaño-Díaz M, Álvarez-Álvarez P, Tobin B, Nieuwenhuis M, Afif-Khouri E, Cámara-Obregón A (2017) Evaluation of the use of low-density LiDAR data to estimate structural attributes and biomass yield in a short-rotation willow coppice: an example in a field trial. Ann For Sci 74:69. https://doi.org/10.1007/s13595-017-0665-7

  13. Dalponte M, Bruzzone L, Gianelle D (2012) Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens Environ 123:258–270. https://doi.org/10.1016/j.rse.2012.03.013

  14. Dechesne C, Mallet C, Le Bris A, Gouet-Brunet V (2017) Semantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery. ISPRS J Photogramm Remote Sens 126:129–145. https://doi.org/10.1016/j.isprsjprs.2017.02.011

  15. Deng S, Katoh M, Yu X, Hyyppä J, Gao T (2016) Comparison of tree species classifications at the individual tree level by combining ALS data and RGB images using different algorithms. Remote Sens 8. https://doi.org/10.3390/rs8121034

  16. Dubayah RO, Drake JB (2000) Lidar remote sensing for forestry applications. J For 98:44–46

  17. European Environmental Agency (2006) European forest types: categories and types for sustainable forest management reporting policy, p 114

  18. Everitt BS (2006) The Cambridge dictionary of statistics (3rd ed). Cambridge University Press, Cambridge

  19. Fassnacht FE, Latifi H, Stereńczak K, Modzelewska A, Lefsky M, Waser LT, Straub C, Ghosh A (2016) Review of studies on tree species classification from remotely sensed data. Remote Sens Environ 186:64–87. https://doi.org/10.1016/j.rse.2016.08.013

  20. Forrester DI, Benneter A, Bouriaud O, Bauhus J (2017) Diversity and competition influence tree allometric relationships – developing functions for mixed-species forests. J Ecol 105:761–774. https://doi.org/10.1111/1365-2745.12704

  21. Hollaus M, Dorigo W, Wagner W, Schadauer K, Höfle B, Maier B (2009) Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data. Int J Remote Sens 30:5159–5175. https://doi.org/10.1080/01431160903022894

  22. Holmgren J, Persson Å̊ (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423. https://doi.org/10.1016/S0034-4257(03)00140-8

  23. Holmgren J, Persson Å, Söderman U (2008) Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int J Remote Sens 29:1537–1552. https://doi.org/10.1080/01431160701736471

  24. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. John Wiley & Sons, Inc, New York

  25. Korpela I, Ole Ørka H, Maltamo M et al (2010) Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fenn 44:319–339. https://doi.org/10.14214/sf.156

  26. Leckie DG, Tinis S, Nelson T, Burnett C, Gougeon FA, Cloney E, Paradine D (2005) Issues in species classification of trees in old growth conifer stands. Can J Remote Sens 31:175–190. https://doi.org/10.5589/m05-004

  27. Ledo A, Cañellas I, Barbeito I, Gordo FJ, Calama RA, Gea-Izquierdo G (2014) Species coexistence in a mixed Mediterranean pine forest: spatio-temporal variability in trade-offs between facilitation and competition. For Ecol Manag 322:89–97. https://doi.org/10.1016/j.foreco.2014.02.038

  28. Lee J, Cai X, Lellmann J, Dalponte M, Malhi Y, Butt N et al (2016) Individual tree species classification from airborne multi-sensor imagery using robust PCA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6):2554–2567. https://doi.org/10.1109/JSTARS.2016.2569408

  29. Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106. https://doi.org/10.1191/0309133303pp360ra

  30. Lin C, Lo CS, Thomson G (2011) A textural modification of the MMAC algorithm for individual tree delineation in forest stand using aerial bitmap images. Proc - 4th Int Congr Image Signal Process CISP 2011 3:1604–1608. https://doi.org/10.1109/CISP.2011.6100501

  31. Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457–465

  32. López C, Espinosa J, Bengoa J (2009) Mapa de Vegetación de Castilla y León. Síntesis, 1(400.000)

  33. Lopez-García P (1980) Estudio de semillas prehistóricas en algunos yacimientos españoles. Trab Prehist 37:419–432

  34. Maack J, Kattenborn T, Fassnacht FE, Enßle F, Hernández J, Corvalán P, Koch B (2015) Modeling forest biomass using very-high-resolution data - combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images. Eur J Remote Sens 48:245–261. https://doi.org/10.5721/EuJRS20154814

  35. MAGRAMA (2012) Criteria and indicators for sustainable forest Management, in Spanish forests 2012. Ministerio de Agricultura, Alimentación y Medio Ambiente. NIPO:280-12-230-1, Madrid, España

  36. Maschler J, Atzberger C, Immitzer M (2018) Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sens 10:1218. https://doi.org/10.3390/rs10081218

  37. Miura N, Jones SD (2010) Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens Environ 114:1069–1076. https://doi.org/10.1016/j.rse.2009.12.017

  38. Moreno-Fernández D, Cañellas I, Calama R, Gordo J, Sánchez-González M (2013) Thinning increases cone production of stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ann For Sci 70:761–768. https://doi.org/10.1007/s13595-013-0319-3

  39. Næsset E (2004) Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser. Remote Sens Environ 91:243–255. https://doi.org/10.1016/j.rse.2004.03.009

  40. Nanos N, Tadesse W, Montero G, Gil L, Alia R (2000) Modelling resin production distributions for Pinus Pinaster Ait. using two probability functions. Ann For Sci 57:379–377. https://doi.org/10.1051/forest:2000128

  41. Nanos N, Tadesse W, Montero G, Gil L, Alia R (2001) Spatial stochastic modeling of resin yield from pine stands. Can J For Res 31:1140–1147. https://doi.org/10.1139/cjfr-31-7-1140

  42. Nanos N, Calama R, Montero G, Gil L (2004) Geostatistical prediction of height/diameter models. For Ecol Manag 195:221–235. https://doi.org/10.1016/j.foreco.2004.02.031

  43. Nguyen HT, Hutyra LR, Hardiman BS, Raciti SM (2016) Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR. Ecol Appl 26:587–601. https://doi.org/10.1890/15-0017

  44. Ørka HO, Gobakken T, Næsset E, Ene L, Lien V (2012) Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Can J Remote Sens 38:125–138. https://doi.org/10.5589/m12-021

  45. Popescu SC (2007) Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 31:646–655. https://doi.org/10.1016/j.biombioe.2007.06.022

  46. Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577. https://doi.org/10.5589/m03-027

  47. Prieto-Recio C, Martín-García J, Bravo F, Diez JJ (2015) Unravelling the associations between climate, soil properties and forest management in Pinus pinaster decline in the Iberian Peninsula. For Ecol Manag 356:74–83. https://doi.org/10.1016/j.foreco.2015.07.033

  48. Prodan M (1968) Forest bimetrics. Elsevier. Pergamon Press, Oxford

  49. Quantum GIS Development Team (2017) QGIS geographic information system. Open Source Geospatial Foundation Project

  50. R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  51. Riofrío J, del Río M, Pretzsch H, Bravo F (2017) Changes in structural heterogeneity and stand productivity by mixing Scot pine and maritime pine. For Ecol Manage InProcess 40:38–48. https://doi.org/10.1016/j.ibmb.2009.12.007

  52. Rodríguez-García A, Martín JA, López R, Mutke S, Pinillos F, Gil L (2015) Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain. Agric For Meteorol 202:83–93. https://doi.org/10.1016/j.agrformet.2014.11.023

  53. Rougier S, Anne P (2014) Improvements of urban vegetation segmentation and classification using multi - temporal Pleiades images. South-Eastern Eur J Earth Obs Geomatics 3:409–414

  54. Rouse JW, Hass RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. Third Earth Resour Technol Satell Symp 1:309–317 doi: citeulike-article-id:12009708

  55. Ruiz LÁ, Recio JA, Crespo-Peremarch P, Sapena M (2016) An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto Int 6049:1–15. https://doi.org/10.1080/10106049.2016.1265595

  56. Shi Y, Wang T, Skidmore AK, Heurich M (2018) Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J Photogramm Remote Sens 137:163–174. https://doi.org/10.1016/j.isprsjprs.2018.02.002

  57. Soliño M, Yu T, Alía R, Auñón F, Bravo-Oviedo A, Chambel MR, de Miguel J, del Río M, Justes A, Martínez-Jauregui M, Montero G, Mutke S, Ruiz-Peinado R, García del Barrio JM (2018) Resin-tapped pine forests in Spain: ecological diversity and economic valuation. Sci Total Environ 625:1146–1155. https://doi.org/10.1016/j.scitotenv.2018.01.027

  58. Suratno A, Seielstad C, Queen L (2009a) Tree species identification in mixed coniferous forest using airborne laser scanning. ISPRS J Photogramm Remote Sens 64:683–693. https://doi.org/10.1016/j.isprsjprs.2009.07.001

  59. Suratno A, Seielstad C, Queen L (2009b) Mapping tree species using LIDAR in mixed-coniferous forests. Proc Silvilaser 2009:1–10

  60. Tinel C, Grizonnet M, Fontannaz D, de Boissezon H, Giros A (2012) ORFEO, the Pleiades accompaniment program and its users thematic commissioning. In XXII ISPRS congress. Vol. 39, p. B3-572. https://doi.org/10.5194/isprsarchives-XXXIX-B3-569-2012

  61. Tonolli S, Dalponte M, Neteler M, Rodeghiero M, Vescovo L, Gianelle D (2011) Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sens Environ 115:2486–2498. https://doi.org/10.1016/j.rse.2011.05.009

  62. Valbuena M, Santamaría J, Sanz F (2016a) Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the national forest inventory data. For Syst 25:1–11. https://doi.org/10.5424/fs/2016251-05790

  63. Valbuena R, Maltamo M, Packalen P (2016b) Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Rev Teledetección (45):15–25. https://doi.org/10.4995/raet.2016.4029

  64. Vauhkonen J, Ørka HO, Holmgren J, Dalponte M, Heinzel J, Koch B (2014) Tree species recognition based on airborne laser scanning and complementary data source. In Forestry applications of airborne laserscanning. Springer, Dordrecht, pp 135–156. https://doi.org/10.1007/978-94-017-8663-8

  65. Vega Isuhuaylas LA, Hirata Y, Santos LCV, Torobeo NS (2018) Natural forest mapping in the Andes (Peru): a comparison of the performance of machine-learning algorithms. Remote Sens 10. https://doi.org/10.3390/rs10050782

  66. Wang L (2010) A multi-scale approach for delineating individual tree crowns with very high resolution imagery. Photogramm Eng Remote Sens 76:371–378. https://doi.org/10.14358/pers.76.4.371

  67. Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23. https://doi.org/10.1093/jpe/rtm005

  68. Zhang Z, Kazakova A, Moskal LM, Styers DM (2016) Object-based tree species classification in urban ecosystems using LiDAR and hyperspectral data. Forests 7:1–16. https://doi.org/10.3390/f7060122

  69. Zipkin EF, Grant EHC, Fagan WF (2012) Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol Appl 22:1962–1972

Download references


The authors wish to thank the Forest Service of Valladolid province for their continuous help in plot installation, maintenance, and data collection. Similarly, the authors wish to express their gratitude to the PNT program for providing us with Pleiades images and to Dr. Fernando Pérez-Cabello for his advice with regard to interpreting the Pleiades images. Also, the authors wish to thank Dr. Iñigo Lizarralde, Dr. Rafael Alonso, and Dra. Beatriz Águeda for their general assistance and to Adam Collins for the English language advice.


Research of Ángela Blázquez-Casado was funded by a contract of Ministerio de Economía, Industria y Competitividad, Spanish Government (DI-14-06953). This study has also been financed through the project AGL2014-51964 FORMIXING (Ministerio de Economía, Industria y Competitividad, Spanish Government) and the CC16–095 PROPINEA agreement between INIA, ITACYL, and the Diputation of Valladolid.

Author information

Correspondence to Ángela Blázquez-Casado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributions of the co-authors

Conceptualization: Francisco Rodríguez; data curation: Rafael Calama, Manuel Valbuena, and Marta Vergarechea; data analysis: Ángela Blázquez-Casado; writing (original draft): Ángela Blázquez-Casado; writing (review and editing): Rafael Calama, Ángela Blázquez-Casado, and Francisco Rodríguez; supervising the work: Francisco Rodríguez.

This article is part of the topical collection on Mediterranean pines

Handling Editor: Barry Alan Gardiner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blázquez-Casado, Á., Calama, R., Valbuena, M. et al. Combining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest. Annals of Forest Science 76, 57 (2019). https://doi.org/10.1007/s13595-019-0835-x

Download citation


  • Crown delineation
  • Inventory
  • Modeling
  • Pleiades
  • Remote sensing
  • Stone pine
  • LiDAR