Mapping oak shoot browning in SW Spain using online imagery as virtual prospecting tool

  • Luis M. Torres-VilaEmail author
  • A. Cristina Echave-Sanabria
  • F. Javier Mendiola-Díaz
  • Francisco J. Moral-García
Research Paper


Key message

Oak shoot browning is spatially widespread throughout the region of Extremadura (SW Spain) following an aggregative distribution pattern, with a much higher prevalence in cork than in holm oak.


Shoot browning is considered a potential contributing or inciting factor to oak decline in SW Iberia. Two causal agents are typically involved, Coraebus florentinus Herbst and a fungal complex in the genus Diplodia Fries (teleomorph Botryosphaeria De Cesati & De Notaris).


Our goals were to map oak shoot browning incidence in Extremadura and to explore geographical/environmental factors potentially involved using a novel image-based prospecting method.


We used online imagery provided by Google Maps/Google Street View. A virtual sampling protocol permitted to inspect, characterise and georeference forest stands and damaged oaks throughout > 5000 km of navigation. Geostatistical interpolation analyses (Indicator Kriging algorithm) and validation processes were conducted to generate probability maps of shoot browning incidence.


We prospected 6478 forest stands in which 3410 oaks with shoot browning symptoms were identified and georeferenced. Damage had a clustered distribution pattern both at the regional scale (IK-based probability maps) and the stand scale (fitting to negative binomial function). Factors such as oak species, stand type (pure vs. mixed), treetop orientation, tree aspect, altitude, ground slope and some interactions among them significantly affected shoot browning incidence.


We provide the first integrating overview on the distribution and prevalence of oak shoot browning at a regional scale in SW Spain and we also define the effects of some geographical/ecological factors involved.


Oak decline Coraebus florentinus Diplodia sp. Holm oak Cork oak Google Maps 



We greatly appreciate the constructive criticism of three anonymous reviewers. This research was supported by the Servicio de Sanidad Vegetal (SSV), Junta de Extremadura.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729CrossRefGoogle Scholar
  2. Branco M, Bragança H, Sousa E, Phillips AJL (2014) Pests and diseases in Portuguese forestry: current and new threats. In: Reboredo F (ed) Forest context and policies in Portugal. Springer, Dordrecht, pp 117–154Google Scholar
  3. Brasier CM (1996) Phytophthora cinnamomi and oak decline in Southern Europe. Environmental constraints including climate change. Ann Sci For 53:347–358CrossRefGoogle Scholar
  4. Brasier CM, Robredo F, Ferráz JFP (1993) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145CrossRefGoogle Scholar
  5. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  6. Buse J, Griebeler EM, Niehuis M (2013) Rising temperatures explain past immigration of the thermophilic oak-inhabiting beetle Coraebus florentinus (Coleoptera: Buprestidae) in south-west Germany. Biodivers Conserv 22:1115–1131CrossRefGoogle Scholar
  7. Cárdenas AM, Gallardo P (2012) The effect of temperature on the preimaginal development of the Jewel beetle, Coraebus florentinus (Coleoptera: Buprestidae). Eur J Entomol 109:21–28CrossRefGoogle Scholar
  8. Cárdenas AM, Gallardo P (2013) The effects of oviposition site on the development of the wood borer Coraebus florentinus (Coleoptera: Buprestidae). Eur J Entomol 110:135–144CrossRefGoogle Scholar
  9. CEC [Council of the European Communities] (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora [habitats directive]. Off J Eur Communities 35:7–50Google Scholar
  10. CNIG-IGN (2016) MDT05: Modelo Digital del Terreno con paso de malla 5m (SRG: ETRS89). Centro Nacional de Información Geográfica, Instituto Geográfico Nacional, Madrid. Accessed 17 October 2018
  11. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366CrossRefGoogle Scholar
  12. Desprez-Loustau ML, Marçais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612CrossRefGoogle Scholar
  13. Evans HF, Moraal LG, Pajares JA (2004) Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 447–474CrossRefGoogle Scholar
  14. Frisullo S, Camele I, Carlucci A, Lops F (2000) Botryosphaeria and Botryosphaeria-like micromycetes on declining oaks in Apulia and Basilicata. Petria 10:1–10Google Scholar
  15. Gallardo P, Cárdenas AM, Soriano JM (2018) Long-term assessment of selective pruning of Quercus species for controlling populations of Coraebus florentinus (Coleoptera: Buprestidae) in Mediterranean forests. Forests 9:49CrossRefGoogle Scholar
  16. Journel AG (1983) Nonparametric estimation of spatial distributions. J Int Assoc Math Geol 15:445–468CrossRefGoogle Scholar
  17. Jurc M, Bojović S, Komjanc B, Krć J (2009) Xylophagous entomofauna in branches of oaks (Quercus spp.) and its significance for oak health in the Karst region of Slovenia. Biologia 64:130–138CrossRefGoogle Scholar
  18. Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathol 44:191–200CrossRefGoogle Scholar
  19. Luque J (1989) Efectos de la temperatura, medio de cultivo y pH en el crecimiento colonial de Diplodia mutila Fr. apud Mont. An Jard Bot Madr 46:215–221Google Scholar
  20. Manion PD (2003) Evolution of concepts in forest pathology. Phytopathology 93:1052–1055CrossRefGoogle Scholar
  21. Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  22. Montero G, San Miguel A, Cañellas I (1998) Sistemas de silvicultura mediterránea La dehesa. In: Jiménez-Díaz RM, Lamo de Espinosa J (eds) Agricultura Sostenible. Agrofuturo, Life and Mundi-Prensa, Madrid, pp 519–554Google Scholar
  23. Moreno G, Pulido FJ (2009) The functioning, management and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Springer, Dordrecht, pp 127–160Google Scholar
  24. Moricca S, Linaldeddu BT, Ginetti B, Scanu B, Franceschini A, Ragazzi A (2016) Endemic and emerging pathogens threatening cork oak trees: management options for conserving a unique forest ecosystem. Plant Dis 100:2184–2193CrossRefGoogle Scholar
  25. Muñoz López MC, Cobos Suárez P, Martínez Saavedra G (1992) La traqueomicosis de Diplodia sp. sobre Quercus sp. Bol San Veg Plagas 18:641–657Google Scholar
  26. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  27. Panzavolta T, Panichi A, Bracalini M, Croci F, Ginetti B, Ragazzi A, Tiberi R, Moricca S (2017) Dispersal and propagule pressure of Botryosphaeriaceae species in a declining oak stand is affected by insect vectors. Forests 8:228CrossRefGoogle Scholar
  28. Ramírez-Hernández A, Micó E, Marcos-García MA, Brustel H, Galante E (2014) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers Conserv 23:2069–2087CrossRefGoogle Scholar
  29. Rodríguez-Molina MC, Blanco-Santos A, Palo-Núñez EJ, Torres-Vila LM, Torres-Álvarez E, Suárez-de-la-Cámara MA (2005) Seasonal and spatial mortality patterns of holm oak seedlings in a reforested soil infected with Phytophthora cinnamomi. For Pathol 35:411–422CrossRefGoogle Scholar
  30. Rousselet J, Imbert C-E, Dekri A, Garcia J, Goussard F, Vincent B, Denux O, Robinet C, Dorkeld F, Roques A, Rossi J-P (2013) Assessing species distribution using Google Street View: a pilot study with the pine processionary moth. PLoS One 8:e74918CrossRefGoogle Scholar
  31. Sallé A, Nageleisen LM, Lieutier F (2014) Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manag 328:79–93CrossRefGoogle Scholar
  32. Sánchez ME, Venegas JA, Romero MA, Phillips AJL (2003) Botryosphaeria and related taxa causing oak canker in southwestern Spain. Plant Dis 87:1515–1521CrossRefGoogle Scholar
  33. Scherrer B (1984) Biostatistique. Gaëtan Morin, QuébecGoogle Scholar
  34. Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Co, New YorkGoogle Scholar
  35. Solinas M (1971) Considerazioni ecologiche sul preoccupante sviluppo di Coroebus florentinus (Herbst) nelle leccete del Gargano. Entomologica 7:115–121Google Scholar
  36. Solinas M (1974) Coroebus florentinus (Herbst) (Coleoptera Buprestidae) biologia, danni, lotta. Entomologica 10:141–193Google Scholar
  37. Soria FJ, Ocete ME (1993) Estudios poblacionales sobre Coroebus florentinus (Herbst) (Col., Buprestidae) en alcornocales andaluces. Bol San Veg Plagas 19:27–35Google Scholar
  38. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133–149CrossRefGoogle Scholar
  39. Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307CrossRefGoogle Scholar
  40. Tiberi R, Branco M, Bracalini M, Croci F, Panzavolta T (2016) Cork oak pests: a review of insect damage and management. Ann For Sci 73:219–232CrossRefGoogle Scholar
  41. Torres-Vila LM, Sánchez-González Á, Ponce-Escudero F, Martín-Vertedor D, Ferrero-García JJ (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur J For Res 131:1103–1116CrossRefGoogle Scholar
  42. Torres-Vila LM, Zugasti-Martínez C, Mendiola-Díaz FJ, De-Juan-Murillo JM, Sánchez-González Á, Conejo-Rodríguez Y, Ponce-Escudero F, Fernández-Moreno F (2017) Larval assemblages of large saproxylic cerambycids in Iberian oak forests: wood quality and host preference shape resource partitioning. Popul Ecol 59:315–328CrossRefGoogle Scholar
  43. Torres-Vila LM, Echave-Sanabria AC, Mendiola-Díaz FJ, Moral-García FJ (2019) Data from mapping oak shoot browning in SW Spain using online imagery as virtual prospecting tool, Annals of Forest Science. V 06 March 2019. ResearchGate. [dataset].
  44. Vodka S, Konvicka M, Cizek L (2009) Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. J Insect Conserv 13:553–562CrossRefGoogle Scholar
  45. Wargo PM (1996) Consequences of environmental stress on oak: predisposition to pathogens. Ann Sci For 53:359–368CrossRefGoogle Scholar
  46. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. J. Wiley & Sons Ltd., ChichesterCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Servicio de Sanidad VegetalConsejería de Medio Ambiente y Rural PAyT, Junta de ExtremaduraMéridaSpain
  2. 2.Servicio de Producción AgrariaConsejería de Medio Ambiente y Rural PAyT, Junta de ExtremaduraMéridaSpain
  3. 3.Departamento de Expresión Gráfica, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain

Personalised recommendations