Quercus suber forest and Pinus plantations show different post-fire resilience in Mediterranean north-western Africa

Research Paper
Part of the following topical collections:
  1. Mediterranean Pines

Abstract

Key message

In the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.

Context

Wildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.

Aims

We have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.

Methods

The habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.

Results

The results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.

Conclusion

The higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime.

Keywords

Cork oak forest Pine plantation Fire Habitat structure Resilience Rif Mediterranean basin 

Notes

Acknowledgments

We wish to thank Professor Mohamed Kadiri, Director of the Applied Botanical Laboratory (Biology Department, Abdelmalek Essaâdi University), for helping on the identification of plant species. Also, we would like to thanks Juli Pausas and Xavier Santos for their revisions of an early version of the manuscript. In addition, we are grateful to Saúl Yubero for their kindness and help in the field work.

Funding

This study was partially financed by the Instituto de Estudio Ceuties (research grant 2015-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13595_2018_742_MOESM1_ESM.xlsx (22 kb)
ESM 1 (XLSX 22 kb)
13595_2018_742_MOESM2_ESM.docx (41 kb)
ESM 2 (DOCX 32 kb)

References

  1. Ajbilou R (2001) Biodiversidad de los bosques de la península Tingitana (Marruecos). PhD dissertation, University of Sevilla, Sevilla, SpainGoogle Scholar
  2. Alanís-Rodríguez E, Jiménez-Pérez J, Valdecantos-Dema A, Pando-Moreno M, Aguirre Calderón O, Treviño-Garza EJ (2011) Caracterización de regeneración leñosa September 2017 postincendio de un ecosistema templado del parque ecológico Chipinque, México. Rev Chapingo Ser Cienc For Ambient 17:31–39.  https://doi.org/10.5154/r.rchscfa.2010.05.032
  3. Aronson J, Pereira JS, Pausas JG (eds) (2009) Cork oak woodlands on the edge: ecology, adaptive management, and restoration. Island Press, Washington, D.C., p 352Google Scholar
  4. Barberis A, Dettori S, Filigheddu MR (2003) Management problems in Mediterranean cork oak forests: post-fire recovery. J Arid Environ 54:565–569.  https://doi.org/10.1006/jare.2002.1079 CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  6. Bekdouche F, Derridj A, Krouchi F (2008) Evolution après feu de la composition floristique de la subéraie de Mizrana (Tizi-Ouzou, Algérie). Sci Tech C 28:19–29Google Scholar
  7. Belghazi B, Romane F (1994) Productivité du pin maritime (Pinus pinaster sol. var. magh.) en peuplements artificiels dans le nord du Maroc. Rev For Médit t XV n° 4Google Scholar
  8. Belghazi B, Ezzahiri M, Romane F (2000) La productivité des peuplements naturels de pin d'Alep dans la forêt de Tamga (Haut Atlas Marocain). Rev For Médit t XXI n° 4Google Scholar
  9. Benabid A (2007) Description de la Composition et de la Structure des Types de Combustibles, « Appui à la mise en œuvre du programme forestier national Elaboration des cartes de risques aux incendies de forêts du Nord du Maroc », 14 ppGoogle Scholar
  10. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538.  https://doi.org/10.1111/j.1469-8137.2004.01252.x CrossRefPubMedGoogle Scholar
  11. Bonnet V, Dutoit T, Tatoni T (2002) Spatial gradients of vegetation and soil in the calcareous Provence (France). In: Trabaud L, Prodon R (eds) Fire and biological processes. Backhuys Publishers, Leiden, pp 303–314Google Scholar
  12. Buhk C, Götzenberger L, Wesche K, Sánchez Gómez P, Hensen I (2006) Post-fire regeneration in a Mediterranean pine forest with historically low fire frequency. Acta Oecol 30:288–298.  https://doi.org/10.1016/j.actao.2006.05.010 CrossRefGoogle Scholar
  13. Burgman MA, Lamont BB (1992) A stochastic model for the viability of Banksia cuneata populations: environmental, demographic, and genetic effects. J Appl Ecol 29:719–727.  https://doi.org/10.2307/2404481 CrossRefGoogle Scholar
  14. Burrows ND (2008) Linking fire ecology and fire management in south-west Australian forest landscapes. For Ecol Manag 255:2394–2406.  https://doi.org/10.1016/j.foreco.2008.01.009 CrossRefGoogle Scholar
  15. Cabezudo B, Latorre A, Nieto J (1995) After fire regeneration in a Quercus suber forest in the south of Spain (Istan, Malaga). Acta Bot Malacit 20:143–151Google Scholar
  16. Calvo L, Santalla S, Marcos E, Valbuena L, Tárrega R, Luis E (2003) Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and others dominated by Quercus pyrenaica, a typical resprouters. For Ecol Manag 184:209–223.  https://doi.org/10.1016/S0378-1127(03)00207-X CrossRefGoogle Scholar
  17. Canadell J, Zedler PH (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer, New York, pp 170–210Google Scholar
  18. Carrión J, Parra I, Navarro C, Munuera M (2000) The past distribution and ecology of the cork oak (Quercus suber) in the Iberian Peninsula: a pollen-analytical approach. Divers Distrib 6:29–44.  https://doi.org/10.1046/j.1472-4642.2000.00070.x CrossRefGoogle Scholar
  19. Catry F, Rego FC, Bugalho MN, Lopes T, Silva JS, Moreira F (2006) Effects of fire on tree survival and regeneration in a Mediterranean ecosystem. For Ecol Manag 234S:S180–S207.  https://doi.org/10.1016/j.foreco.2006.08.316 Google Scholar
  20. Catry FX, Moreira F, Duarte I, Acacio V (2009) Factors affecting post-fire crown regeneration in cork oak (Quercus suber L.) trees. Eur J For Res 128:231–240.  https://doi.org/10.1007/s10342-009-0259-5 CrossRefGoogle Scholar
  21. Catry F, Rego F, Moreira F, Fernandes P, Pausas J (2010) Post-fire tree mortality in mixed forests of Central Portugal. For Ecol Manag 260:1184–1192.  https://doi.org/10.1016/j.foreco.2010.07.010 CrossRefGoogle Scholar
  22. Catry FX, Moreira F, Pausas JG, Fernandes PM, Rego F, Cardillo E, Curt T (2012) Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS One 7(6):e39810CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chambers JC, Bradley BA, Brown CA, D’Antonio C, Germino MJ, Hardegree SP, Grace JB, Miller RF, Pyke DA (2014) Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in the cold desert shrublands of western North America. Ecosystems 17:360–375.  https://doi.org/10.1007/s10021-013-9725-5 CrossRefGoogle Scholar
  24. Chergui B, Fahd S, Santos X, Pausas JG (2017) Socioeconomic factors drive fire regime variability in the Mediterranean Basin. Ecosystems 21:619–628.  https://doi.org/10.1007/s10021-017-0172-6
  25. Clarke PJ, Lawes MJ, Midgley JJ, Lomant BB, Ojeda F, Burrows GE (2013) Resprouting as a key functional trait in woody plants: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35.  https://doi.org/10.1111/nph.12001 CrossRefPubMedGoogle Scholar
  26. Coca M, Pausas JG (2012) Scale-dependent segregation of seeders and resprouters in cork oak (Quercus suber) forests. Oecologia 168:503–510.  https://doi.org/10.1007/s00442-011-2102-1 CrossRefPubMedGoogle Scholar
  27. Costa A, Madeira M, Santos JL, Oliveira A (2011) Change and dynamics in Mediterranean evergreen oak woodlands landscapes of southwestern Iberian Peninsula. Landsc Urban Plan 102(3):164–176.  https://doi.org/10.1016/j.landurbplan.2011.04.002 CrossRefGoogle Scholar
  28. Cruz MG, Fernandes PM (2008) Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands. Int J Wildland Fire 17:194–204.  https://doi.org/10.1071/WF07009 CrossRefGoogle Scholar
  29. DeBano FL, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York, p 352Google Scholar
  30. De Grandpré L, Morissette J, Gauthier S (2000) Long-term post-fire changes in the northeastern boreal forest of Quebec. J Veg Sci 11:791–800.  https://doi.org/10.2307/3236549 CrossRefGoogle Scholar
  31. Diaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–2303. https://doi.org/10.1890/00129658(2002)083[2293:SEODRI]2.0.CO;2Google Scholar
  32. Daubenmire R (1959) A canopy-coverage method of vegetation al analysis. North West Sci 33:43–64Google Scholar
  33. Domínguez L, Calvo L, Luis E (2002) Impact of wildfire season on regeneration of Quercus pyrenaica forest and Pinus sp. stand. J Med Ecol 3:47–54Google Scholar
  34. Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J For Res 36:2285–2299.  https://doi.org/10.1139/x06-132 CrossRefGoogle Scholar
  35. Emberger L (1955) Une classification biogéographique des climats. Recueil des Travaux du Laboratoire de Botanique et Géologie. Faculté des Sciences de Montpellier. Sér Bot 7:3–43Google Scholar
  36. Fernandes PM, Rigolot E (2007) The fire ecology and management of maritime pine (Pinus pinaster Ait.). For Ecol Manag 241:1–13.  https://doi.org/10.1016/j.foreco.2007.01.010 CrossRefGoogle Scholar
  37. Fernandes PM (2009) Combining forest structure data and fuel modeling to classify fire hazard in Portugal. Ann For Sci 66:415–424.  https://doi.org/10.1051/forest/2009013 CrossRefGoogle Scholar
  38. Fernández RJ, Paruelo JM (1988) Root systems of two Patagonian shrubs: a quantitative description using a geometrical method. J Range Manag 41:220–223.  https://doi.org/10.2307/3899171 CrossRefGoogle Scholar
  39. Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analysis. Glob Environ Chang 16:253–267.  https://doi.org/10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  40. Ghallab A, Taiqui L (2015) Modélisation de la distribution spatiale des paramètres bioclimatiques dans la région Tanger Tétouan (Rif occidental). Eur Sci J edition 11, n° 17Google Scholar
  41. González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting stand damage and tree survival in burned forests in Catalonia (North-east Spain). Ann For Sci 64:733–742.  https://doi.org/10.1051/forest:2007053 CrossRefGoogle Scholar
  42. Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG (2013) Fire structures pine serotiny at different scales. Am J Bot 100:2349–2356.  https://doi.org/10.3732/ajb.1300182 CrossRefPubMedGoogle Scholar
  43. Hodgkinson KC (1998) Sprouting success of shrubs after fire: height-dependent relationships for different strategies. Oecologia 115:64–72.  https://doi.org/10.1007/s004420050492 CrossRefPubMedGoogle Scholar
  44. Jacquet K, Prodon R (2007) Résilience comparée des peuplements de chêne vert et de chêne-liège après incendie. Rev For Fr 59:31–44.Google Scholar
  45. James S (1984) Lignotubers and burls-their structure, function and ecological significance in Mediterranean ecosystems. Bot Rev 50:225–266.  https://doi.org/10.1007/BF02862633 CrossRefGoogle Scholar
  46. Keeley JE (1986) Resilience of Mediterranean shrub communities to fire. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience in Mediterranean-type ecosystems. Dr W Junk, Dordrecht, the Netherlands, pp 95–112CrossRefGoogle Scholar
  47. Keeley JE (2012) Ecology and evolution of pine life histories. Ann For Sci 69:445–453.  https://doi.org/10.1007/s13595-012-0201-8 CrossRefGoogle Scholar
  48. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, CambridgeGoogle Scholar
  49. Lemmon P (1957) A new instrument for measuring forest overstory density. J For 55:667–668Google Scholar
  50. Lipoma ML, Gurvich DE, Urcelay C, Díaz S (2016) Plant community resilience in the face of fire: experimental evidence from a semi-arid shrubland. Austral Ecology 41:501–511..  https://doi.org/10.1111/aec.12336
  51. Lippitt CL, Stow DA, O’Leary JF, Franklin J (2012) Influence of short-interval fire occurrence on post-fire recovery of fire-prone shrublands in California, USA. Int J Wildland Fire 22:184–193.  https://doi.org/10.1071/WF10099
  52. Lloret F (1998) Fire, canopy cover and seedling dynamics in Mediterranean shrubland of northeastern Spain. J Veg Sci 9:417–430.  https://doi.org/10.2307/3237106 CrossRefGoogle Scholar
  53. Lloret F, Pausas JG, Vilà M (2003) Responses of Mediterranean plant species to different fire frequencies in Garraf Natural Park (Catalonia, Spain): field observations and modelling predictions. Plant Ecol 167:223–235.  https://doi.org/10.1023/A:1023911031155 CrossRefGoogle Scholar
  54. Mateos E, Santos X, Pujade-Villar J (2011) Taxonomic and functional responses to fire and post-fire management of a Mediterranean Hymenoptera community. Environ Manag 48:1000–1012.  https://doi.org/10.1007/s00267-011-9750-0 CrossRefGoogle Scholar
  55. Mharzi Alaoui H, Assali F, Rouchdi M, Lahssini S, Tahiri D (2015) Analyse de l’interaction entre l’éclosion des feux de forêts et les types de bioclimat au Nord du Maroc—cas de la région du Rif occidental. Rev Mar Sci Agron Vét 3:46–53Google Scholar
  56. Mharzi Alaoui H, Assali F, Rouchdi M, Tahiri D, Lahssini S, Aafi A, Moukrim S (2017) Cartographie de l’intensité du feu et de la sensibilité aux feux de cimes en forêts Méditerranéennes. Cas de la province de Chefchaouen au nord du Maroc. Rev Ecol Terre Vie 72:387–409Google Scholar
  57. Molina JR, Rodriguez Silva F, Herrera MA (2011) Potential crown fire behaviour in Pinus pinea stands following different fuel treatments. Forest Systems 20:266–277Google Scholar
  58. Molinas ML, Verdaguer D (1993) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). Am J Bot 80:182–191.  https://doi.org/10.2307/2445038 CrossRefGoogle Scholar
  59. Moreira F, Duarte L, Catry F, Acacio V (2007) Cork extraction as a key factor determining post-fire cork oak survival in a mountain region of southern Portugal. For Ecol Manag 253:30–37.  https://doi.org/10.1016/j.foreco.2007.07.001 CrossRefGoogle Scholar
  60. Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958-1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567.  https://doi.org/10.1023/A:1013130528470 CrossRefGoogle Scholar
  61. Moreira F, Russo D (2007) Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landsc Ecol 22:1461–1476.  https://doi.org/10.1007/s10980-007-9125-3 CrossRefGoogle Scholar
  62. Moritz MA, Parisien MA, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3(6):49.  https://doi.org/10.1890/ES11-00345.1 CrossRefGoogle Scholar
  63. Ne’eman G, Lev-Yadun S, Arianoutsou M (2012) Fire-related traits in Mediterranean Basin plants. Isr J Ecol Evol 58:177–194.  https://doi.org/10.1560/IJEE.58.2-3.177 Google Scholar
  64. Nimour Nour E (1997) Inflammabilité de la végétation méditerranéenne. Thesis report. Aix-Marseille University, Marseille, FranceGoogle Scholar
  65. Ormeño E, Céspedes B, Sanchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manag 257:471–482.  https://doi.org/10.1016/j.foreco.2008.09.019 CrossRefGoogle Scholar
  66. Pastor-López A, Taiqui L, Bouziane H, Riadi H, Martín JM (1997) Structure of Quercus suber forests in Chefchaouen basin (NE. Morocco). Implications on management at a landscape scale. Mediterránea 16:65–76Google Scholar
  67. Pausas JG (1997) Resprouting of Quercus suber in NE Spain after fire. J Veg Sci 8:703–706.  https://doi.org/10.2307/3237375 CrossRefGoogle Scholar
  68. Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems. A simulation approach. J Veg Sci 10:717–722.  https://doi.org/10.2307/3237086 CrossRefGoogle Scholar
  69. Pausas JG (2001) Resprouting vs seeding—a Mediterranean perspective. Oikos 94:193–194.  https://doi.org/10.1034/j.1600-0706.2001.t01-1-10979.x CrossRefGoogle Scholar
  70. Pausas JG, Alessio G, Moreira B, Corcobado G (2012) Fires enhance flammability in Ulex parviflorus. New Phytol 193:18–23.  https://doi.org/10.1111/j.1469-8137.2011.03945.x CrossRefPubMedGoogle Scholar
  71. Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Allozal JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice—a review. Plant Ecol 171:209–220.  https://doi.org/10.1023/B:VEGE.0000029381.63336.20 CrossRefGoogle Scholar
  72. Pausas JG, Carbó E, Caturla RN, Gil JM, Vallejo R (1999) Post-fire regeneration patterns in the eastern Iberian Peninsula. Acta Oecol 20:499–508.  https://doi.org/10.1016/S1146-609X(00)86617-5 CrossRefGoogle Scholar
  73. Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226.  https://doi.org/10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  74. Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17:713–723.  https://doi.org/10.1071/WF07151 CrossRefGoogle Scholar
  75. Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204:55–65.  https://doi.org/10.1111/nph.12921 CrossRefPubMedGoogle Scholar
  76. Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer, Berlin, pp 3–16CrossRefGoogle Scholar
  77. Perula VG, Cerrillo RMN, Rebollo PF, Murillo GV (2003) Postfire regeneration of Pinus pinea L. and Pinus pinaster Aiton in Andalucia (Spain). J Environ Manag 31:86–99.  https://doi.org/10.1007/s00267-002-2786-4 CrossRefGoogle Scholar
  78. Pleguezuelos JM, Brito JC, Fahd S, Feriche M, Mateo JA, Moreno-Rueda G, Reques R, Santos X (2010) Setting conservation priorities for the Moroccan herpetofauna: the utility of regional red lists. Oryx 44:501–508.  https://doi.org/10.1017/S0030605310000992 CrossRefGoogle Scholar
  79. Proença VM, Pereira HM, Vicente L (2010) Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecol 36:626–633.  https://doi.org/10.1016/j.actao.2010.09.008 CrossRefGoogle Scholar
  80. Quezel P, Barbero M, Benabid A, Rivas-Martinez S (1992) Contribution a l'étude des groupements forestiers et pré-forestiers du Maroc oriental. Stud Bot 10:57–90Google Scholar
  81. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org
  82. Retana J, Espelta JM, Habrouk A, Ordonez JL, de Sola-Morales F (2002) Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9:89–97.  https://doi.org/10.1080/11956860.2002.11682694 CrossRefGoogle Scholar
  83. Rodrigo A, Retana J, Picó X (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729.  https://doi.org/10.1890/02-0492 CrossRefGoogle Scholar
  84. Rodríguez-Garcíaa E, Bravoa F, Spies TA (2011) Effects of overstorey canopy, plant plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251.  https://doi.org/10.1016/j.foreco.2011.03.029 CrossRefGoogle Scholar
  85. Roy J, Sonie L (1992) Germination and population dynamics of Cistus species in relation to fire. J Appl Ecol 29:647–655.  https://doi.org/10.2307/2404472 CrossRefGoogle Scholar
  86. Santos X, Cheylan M (2013) Taxonomic and functional response of a Mediterranean reptile assemblage to a repeated fire regime. Biol Conserv 168:90–98.  https://doi.org/10.1016/j.biocon.2013.09.008 CrossRefGoogle Scholar
  87. Shakesby RA, Boakes D, Coelho COA, Gonçalves AJB, Walsh RPD (1996) Limiting the soil degradation impacts of wildfire in pine and Eucalyptus forest in Portugal: a comparison of alternative post-fire management practices. Appl Geogr 16:337–355.  https://doi.org/10.1016/0143-6228(96)00022-7 CrossRefGoogle Scholar
  88. Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234.  https://doi.org/10.1097/00010694-199904000-00002 CrossRefGoogle Scholar
  89. Tapias R, Climent J, Pardos JA, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171:53–68.  https://doi.org/10.1023/B:VEGE.0000029383.72609.f0 CrossRefGoogle Scholar
  90. Tessler N, Sapir Y, Wittenberg L, Greenbaum N (2015) Recovery of Mediterranean vegetation after recurrent Forest fires: insight from the 2010 forest fire on Mount Carmel, Israel. Land Degrad Develop 27:1424–1431.  https://doi.org/10.1002/ldr.2419 CrossRefGoogle Scholar
  91. Thanos CA, Doussi MÁ (2000) Post-fire regeneration of Pinus brutia forests. In: Ne’ eman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys Publishers, Leiden, pp 291–301Google Scholar
  92. Torres I, Pérez B, Quesada J, Viedma O, Moreno JM (2016). Forest shifts induced by fire and management legacies in a Pinus pinaster woodland. For Ecol Manag 361:309–317.  https://doi.org/10.1016/j.foreco.2015.11.027
  93. Trabaud L (1982) Effects of past and present fire on the vegetation of the FrenchMediterranean region. In: Conrad CE, Oechel WC (eds) Proceedings of the symposium on the dynamics and management of Mediterranean-type ecosystems. June, pp 22–26Google Scholar
  94. Trabaud L, Lepart J (1980) Diversity and stability in garrique ecosystems after fire. Vegetatio 43:49–57CrossRefGoogle Scholar
  95. Trabaud L, Oustric J (1989) Comparison between post-fire regeneration strategies of two Cistus species. Rev Ecol (Terre et Vie) 44:3–14Google Scholar
  96. Úbeda X, Outeiro LR, Sala M (2006) Vegetation regrowth after a differential intensity forest fire in a Mediterranean environment, Northeast Spain. Land Degrad Develop 17:429–440.  https://doi.org/10.1002/ldr.748 CrossRefGoogle Scholar
  97. Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for promoting ecosystem resilience in fire-prone Mediterranean shrublands. Restor Ecol 17(3):414–421.  https://doi.org/10.1111/j.1526-100X.2008.00401.x CrossRefGoogle Scholar
  98. Vallejo R, Aronson J, Pausas JG, Cortina J (2006) Mediterranean woodlands. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier. Blackwell Science, Oxford, pp 193–207Google Scholar
  99. Vega JA, Fernández C, Pérez-Gorostiaga P, Fonturbel T (2010) Response of maritime pine (Pinus pinaster Ait.) recruitment to fire severity and post-fire management in a coastal burned area in Galicia (NW Spain). Plant Ecol 206:297–308.  https://doi.org/10.1007/s11258-009-9643-y CrossRefGoogle Scholar
  100. Verdú M (2000) Ecological and evolutionary differences between Mediterranean seeders and resprouters. J Veg Sci 11:265–268.  https://doi.org/10.2307/3236806 CrossRefGoogle Scholar
  101. Walker XJ, Mack MC, Johnstone JF (2016) Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20:1137–1150.  https://doi.org/10.1007/s10021-016-0097-5 CrossRefGoogle Scholar
  102. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Equipe de Recherche Ecologie, Systématique, Conservation de la Biodiversité, Faculté des Sciences de TétouanUniversité Abdelmalek EssaâdiTétouanMorocco
  2. 2.CIBIO/InBIOCentro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoVairãoPortugal

Personalised recommendations