Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: a basis for establishing sustainable forest management strategies

  • Teresa Bueis
  • María Belén Turrión
  • Felipe Bravo
  • Valentín Pando
  • Adele Muscolo
Original Paper
Part of the following topical collections:
  1. Mediterranean Pines


Key message

Water availability and soil pH seem to be major constraints for enzyme activities in calcareous soils under Pinus halepensis and acidic soils under Pinus sylvestris plantations respectively. Proposals for improving enzyme activities may include the promotion of broadleaf species to increase soil pH and the modulation of stand density or the implementation of soil preparation techniques to facilitate water infiltration.


Soil enzymes play a key role in nutrient turnover in forest ecosystems, as they are responsible for the transformation of organic matter into available nutrients for plants. Enzyme activities are commonly influenced by temperature, humidity, nutrient availability, pH, and organic matter content.


To assess the differences between enzyme activities in calcareous soils below Pinus halepensis and acidic soils below Pinus sylvestris plantations in Spain and to trace those differences back to edapho-climatic parameters to answer the questions: Which environmental factors drive enzyme activities in these soils? How can forest management improve them?


The differences in climatic, soil physical, chemical, and biochemical parameters and the correlations between these parameters and enzyme activities in soils were assessed.


Low pH and high level of phenols in acidic soils under Pinus sylvestris and water deficit in calcareous soils under Pinus halepensis plantations appeared to be the most limiting factors for enzyme activities.


Options such as the promotion of native broadleaf species in the Pinus sylvestris stands and the modulation of Pinus halepensis stand density or the implementation of soil preparation techniques may improve enzyme activities and, therefore, nutrient availability.


Dehydrogenase Catalase Phosphatase Urease FDA hydrolysis reaction 



The authors thank Elisa Mellado, Temesgen Desalegn, Olga López, and Carlos Alejandro Mendoza for their assistance in the field and Carmen Blanco, Juan Carlos Arranz, Carmelo Malamaci, and Maria Sidari for their advice in laboratory analysis.


This work was supported by the University of Valladolid and Banco Santander (predoctoral grant to T. Bueis), the Mediterranean Regional Office of the European Forest Institute (EFIMED; “Short Scientific Visit” grant to T. Bueis), and the Ministry of Economy and Competitiveness of the Spanish Government (AGL2011-29701-C02-02 and AGL2014-51964-C2-1-R).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, LondonGoogle Scholar
  2. Ameztegui A, Cabon A, De Cáceres M, Coll L (2017) Managing stand density to enhance the adaptability of Scots pine stands to climate change: a modelling approach. Ecol Model 356:141–150. CrossRefGoogle Scholar
  3. Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental-conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395. CrossRefGoogle Scholar
  4. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479. CrossRefGoogle Scholar
  5. Bashour I I, Sayegh A H (2007) Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  6. Beck T (1971) Die Messung der Katalaseaktivität von Böden. Z Pflanzenernahrung dungung und bodenkunde 130:68–81. CrossRefGoogle Scholar
  7. Berg B (2014) Foliar litter decomposition: a conceptual model with focus on pine (Pinus) litter—a genus with global distribution. ISRN Forestry 2014:22–22. CrossRefGoogle Scholar
  8. Blagodatskaya EV, Anderson TH (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO(2) of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274. CrossRefGoogle Scholar
  9. Bloem J, Hopkins DW, Benedetti A (2006) Microbiological methods for assessing soil quality. CABI Publishing, WallingfordGoogle Scholar
  10. Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural-waters. Water Res 17:511–525. CrossRefGoogle Scholar
  11. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. CrossRefGoogle Scholar
  12. Bueis T, Bravo F, Pando V, Turrión MB (2016) Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau. Iforest-Biogeosci Forestry 9:394–401. CrossRefGoogle Scholar
  13. Bueis T, Bravo F, Pando V, Turrion MB (2017a) Influencia de la densidad del arbolado sobre el desfronde y su reciclado en pinares de repoblación del norte de España. Bosque 38:401–407. CrossRefGoogle Scholar
  14. Bueis T, Bravo F, Pando V, Turrion MB (2017b) Site factors as predictors for Pinus halepensis Mill. productivity in Spanish plantations. Ann For Sci 74:6. CrossRefGoogle Scholar
  15. Bueis T, Turrión MB, Bravo F, Pando V, Muscolo A (2017c) Dataset of soil, climatic and stand variables in Pinus sylvestris and Pinus halepensis plantations in Spain [Dataset]. Zenodo.
  16. Burns RG (1978) Soil enzymes. Academic Press, LondonGoogle Scholar
  17. Carrasco B, Cabaneiro A, Fernandez I (2017) Exploring potential pine litter biodegradability as a natural tool for low-carbon forestry. For Ecol Manag 401:166–176. CrossRefGoogle Scholar
  18. Casida LE Jr, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376CrossRefGoogle Scholar
  19. Cobertera E (1993) Edafología aplicada: suelos, producción agraria, planificación territorial e impactos ambientalesGoogle Scholar
  20. Das SK, Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G (ed) Soil enzymology. Soil Biology, vol 22. Springer, Berlin Heidelberg, pp 25–42CrossRefGoogle Scholar
  21. Duchaufour P (1984) Edafología 1. Edafogénesis y Clasificación. Masson, Barcelona, SpainGoogle Scholar
  22. Gallardo A, Schlesinger WH (1994) Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol Biochem 26:1409–1415. CrossRefGoogle Scholar
  23. Garcia C, Hernandez T (1997) Biological and biochemical indicators in derelict soils subject to erosion. Soil Biol Biochem 29:171–177. CrossRefGoogle Scholar
  24. García C, Hernández T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–1191. CrossRefGoogle Scholar
  25. Gartzia-Bengoetxea N, Gonzalez-Arias A, Kandeler E, de Arano IM (2009) Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country. Ann For Sci 66:303. CrossRefGoogle Scholar
  26. Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887. CrossRefGoogle Scholar
  27. Gonzalez-Quinones V, Stockdale EA, Banning NC, Hoyle FC, Sawada Y, Wherrett AD, Jones DL, Murphy DV (2011) Soil microbial biomass—interpretation and consideration for soil monitoring. Soil Res 49:287–304. CrossRefGoogle Scholar
  28. Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. CrossRefPubMedGoogle Scholar
  29. Hofmann E (1963) Urease. In: Bergmeyer H-U (ed) Methods of enzymatic analysis. Academic Press, New YorkGoogle Scholar
  30. IGME (1975) Mapa Geológico de España. Escala 1/50 000. Instituto Geológico y Minero de España,Google Scholar
  31. Isermeyer H (1952) Eine einfache Methode sur Bestimmung der Bodenatmung und der Carbonate im Boden. Z Pflanzenernähr Bodenkd 56:26–38CrossRefGoogle Scholar
  32. Jenkinson D S (1977) The soil biomass New Zealand Soil News 25:213–218Google Scholar
  33. Jenkinson DS, Ladd JN (1981) Microbial biomass in soils: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–417Google Scholar
  34. Llorente M, Turrion MB (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J For Res 129:73–81. CrossRefGoogle Scholar
  35. Lucas-Borja ME, Candel Pérez D, López Serrano FR, Andrés M, Bastida F (2012) Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil. Eur J Soil Sci 63:541–549. CrossRefGoogle Scholar
  36. Marcos E, Calvo L, Marcos JA, Taboada A, Tarrega R (2010) Tree effects on the chemical topsoil features of oak, beech and pine forests. Eur J For Res 129:25–30. CrossRefGoogle Scholar
  37. Martínez-Salgado MM, Gutiérrez-Romero V, Jannsens M, Ortega-Blu R (2010) Biological soil quality indicators: a review. In: Mendez-Vilas A (ed) Current research technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Spain, pp 319–328Google Scholar
  38. McCarty GW, Shorgen DR, Bremner JM (1992) Regulation of urease production in soil by microbial assimilation of nitrogen. Biol Fertil Soils 12:261–264. CrossRefGoogle Scholar
  39. Mondini C, Contin M, Leita L, De Nobili M (2002) Response of microbial biomass to air-drying and rewetting in soils and compost. Geoderma 105:111–124. CrossRefGoogle Scholar
  40. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphorus in natural waters. Anal Chim Acta 27:31–36. CrossRefGoogle Scholar
  41. Muscolo A, Sidari M, Mercurio R (2007) Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. For Ecol Manag 242:412–418. CrossRefGoogle Scholar
  42. Muscolo A, Settineri G, Attina E (2015) Early warning indicators of changes in soil ecosystem functioning. Ecol Indic 48:542–549. CrossRefGoogle Scholar
  43. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33Google Scholar
  44. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 215–243. CrossRefGoogle Scholar
  45. Ninyerola M, Pons i Fernández X, Roure J M (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona. Bellaterra, Barcelona, SpainGoogle Scholar
  46. Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190. CrossRefGoogle Scholar
  47. Querejeta JI, Roldán A, Albaladejo J, V c C (2001) Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate. For Ecol Manag 149:115–128. CrossRefGoogle Scholar
  48. Scheu S (1990) Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84:351–358. CrossRefPubMedGoogle Scholar
  49. Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74. CrossRefGoogle Scholar
  50. Tabatabai MA (1994) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, Madison, pp 775–833Google Scholar
  51. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. CrossRefGoogle Scholar
  52. Turrión MB, Gallardo JF, González MI (1997) Nutrient availability in forest soils as measured with anion exchange membranes. Geomicrobiol J 14:51–64. CrossRefGoogle Scholar
  53. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. CrossRefGoogle Scholar
  54. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. CrossRefGoogle Scholar
  55. Yang K, Zhu JJ, Yan QL, Zhang JX (2012) Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China. Ann For Sci 69:795–803. CrossRefGoogle Scholar
  56. Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, Garcia-Renes F, Mataix-Beneyto J (2007) Assessing the effects of air-drying and rewetting pre-treatment on soil microbial biomass, basal respiration, metabolic quotient and soluble carbon under Mediterranean conditions. Eur J Soil Biol 43:120–129. CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sustainable Forest Management Research InstituteUniversity of Valladolid & INIAPalenciaSpain
  2. 2.Departamento de Ciencias Agroforestales. E.T.S. Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain
  3. 3.Departamento de Producción Vegetal y Recursos Forestales. E.T.S. Ingenierías AgrariasUniversidad de ValladollidPalenciaSpain
  4. 4.Departamento de Estadística e Investigación Operativa. E.T.S. Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain
  5. 5.Dipartimento di Gestione dei Sistemi Agrari e ForestaliUniversità degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly

Personalised recommendations