Comparison of teak wood properties according to forest management: short versus long rotation

  • Dwi Erikan Rizanti
  • Wayan Darmawan
  • Béatrice George
  • André Merlin
  • Stéphane Dumarcay
  • Hubert Chapuis
  • Christine Gérardin
  • Eric Gelhaye
  • Phila Raharivelomanana
  • Rita Kartika Sari
  • Wasrin Syafii
  • Rozi Mohamed
  • Philippe GerardinEmail author
Original Paper


Key message

Teak ( Tectona grandis L.f.) is one of the most important tropical hardwood tree species, which is widely planted in Indonesia. Wood properties are strongly influenced by forest management conditioning further utilization of wood.


In Indonesia, teak wood has been supplied from the state forests (Perhutani) for long rotation teak and from community teak plantations for short rotation teak. Short rotation teak has been harvested at 7–10 years and long rotation teak at 40–60 years.


This paper discusses the characterization of technical properties of short and long rotation teak wood based on the chemical, anatomical, physical, and mechanical properties.


The properties of short rotation and long rotation teak woods were characterized by measuring their density, extractive contents, chemical composition, swelling, wettability, water sorption isotherm, decay resistance, anatomical properties, bending strength (modulus of rupture (MOR), modulus of elasticity (MOE)), and hardness.


The results indicate that short rotation teak was not particularly different in swelling, MOE and MOR, and Brinell hardness compared to long rotation teak, although it was less dense and less durable due to lower heartwood and extractive contents. Therefore, careful attention should be given to the use of short rotation teak in some wood-processing technologies.


Lower wood density and durability of the short rotation compared to the long rotation teak will restrict its utilization to some extent for both indoor and outdoor applications. Fast-growing teak from community cannot be used as usual heartwood teak from Perhutani because of the very low proportion of useful heartwood in the stem.


Extractives Durability Forest management Rotation Tectona grandis Wood properties 



The authors gratefully acknowledge the Ministry of Education and Culture Indonesia (BPKLN) and RISTEK DIKTI for the master degree scholarship of Dwi Erikan Rizanti and the “Ministère des Affaires Etrangères et du Développement International” (MAEDI) for its financial support through the Bio-Asie program. LERMAB is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01. Lab of Excellence ARBRE).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adamopoulos S, Passialis C, Voulgaridis E (2007) Strength properties of juvenile and mature wood in black locust (Robinia pseudoacacia L.) Wood Fiber Sci 39:241–249Google Scholar
  2. Antunes CSA, Bietti M, Salamone M, Scione N (2000) Early stage in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic model compounds. J Photochem Photobiol A Chem 163:453–462CrossRefGoogle Scholar
  3. Baillères PH, Durand PY (2000) Non-destructive techniques for wood quality assessment of plantation-grown teak. Bois Forêts Trop 263:17–29Google Scholar
  4. Bhat KM, Priya PB, Rugmini P (2001) Characterisation of juvenile wood in teak. Wood Sci Technol 34:517–532CrossRefGoogle Scholar
  5. Bhat KM, Thulasidas PK, Maria Florence EJ, Jayaraman K (2005) Wood durability of home-garden teak against brown-rot and white-rot fungi. Trees 19:654–660CrossRefGoogle Scholar
  6. Bravery AF (1979) A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. In: Screening techniques for potential wood preservative chemicals. Proceedings of a special seminar held in association with the 10th annual meeting of the IRG, Peebles 1978. Swedish Wood Preservation Institute Report No. 136. StockholmGoogle Scholar
  7. Clark A, Daniels RF, Jordan L (2006) Juvenile mature wood transition in loblolly pine as defined by annual radial increment specific gravity, proportion of latewood, and microfibril angle. Wood Fiber Sci 38:292–299Google Scholar
  8. Darmawan W, Nandika D, Sari RK, Sitompul A, Rahayu I, Gardner D (2015) Juvenile and mature wood characteristics of short and long rotation teak in Java. IAWA J 36:429–443. CrossRefGoogle Scholar
  9. Dwianto W, Marsoem SN (2008) Review of natural factor research that affects wood physical and mechanical properties of Indonesia. Jurnal Ilmu dan Teknologi Kayu Tropis 6(2). Masyarakat Peneliti Kayu IndonesiaGoogle Scholar
  10. Edou Engonga P, Schneider R, Gérardin P, Loubinoux B (1999) Chemical modification of wood with perfluoroalkanols and MDI. Holzforschung 53:272–276Google Scholar
  11. Edou Engonga P, Schneider R, Gérardin P, Loubinoux B (2000) Preparation and dimensional stability of wood grafted with alkyl chains. Holz als Roh-und Werkstoff 58:284–286CrossRefGoogle Scholar
  12. European Standard (1993) EN 310, Wood-based panels—determination of modulus of elasticity in bending and of bending strengthGoogle Scholar
  13. European Standard (1996) EN 113, Wood preservatives—test method for determining the protective effectiveness against wood destroying basidiomycetes—determination of the toxic valuesGoogle Scholar
  14. European Standard (2010) EN 1534, Wood flooring—determination of resistance to indentation—Test methodGoogle Scholar
  15. Evans J, Senft JF, Green DW (2000) Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones. For Prod J 50:75–87Google Scholar
  16. Gierlinger N, Jacques D, Grabner M, Wimmer R, Schwanninger M, Rozenberg P, Pâques LE (2004) Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees Struct Funct 18:102–108CrossRefGoogle Scholar
  17. Gryc V, Vavrcik H, Horn K (2011) Density of juvenile and mature wood of selected coniferous species. J For Sci 57:123–130CrossRefGoogle Scholar
  18. Hardiyanto EB, Prayitno TA (2006) Present utilization of small-diameter teak log from community teak plantations in Java and Eastern Indonesia. Technical Report, ITTO PPD 121/06 Rev. 2(I)Google Scholar
  19. Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145Google Scholar
  20. D.N.S. Hon, "Weathering and photochemistry of wood", in Wood and Cellulosic chemistry, Second Edition 2001, pp. 513–546, CRC PressGoogle Scholar
  21. Kokutse AD, Baillères H, Stokes A, Kokou K (2004) Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.) For Ecol Manag 189:37–48CrossRefGoogle Scholar
  22. Koubaa A, Isabel N, Shu Yin Z, Beaulieu J, Bousquet J (2005) Transition from juvenile to mature wood in black spruce (Picea mariana (Mill. B.S.P.) Wood Fiber Sci 37:445–455Google Scholar
  23. Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence in size- and age-related changes in tree structure and function pp 121–164 Part of the Tree Physiology book series (TREE, volume 4)Google Scholar
  24. Lukmandaru G, Ogiyama K (2005) Bioactive compounds from ethyl acetate extract of teakwood (Tectona grandis L.f.) Wood Biomass 6:413–416Google Scholar
  25. Lukmandaru G, Takahashi K (2008) Variation in the natural termite resistance of teak (Tectona grandis Linn. fil.) wood as a function of tree age. Ann For Sci 65:708CrossRefGoogle Scholar
  26. Lukmandaru G, Takahashi K (2009) Radial distribution of quinones in plantation teak (Tectona grandis Linn. fil.) Ann For Sci 66:605. CrossRefGoogle Scholar
  27. Martawijaya A, Kartasujana I, Kadir K, Prawira S (2005) Atlas kayu indonesia. Forest Products Research Institute, BogorGoogle Scholar
  28. Miller RB (1999) Wood handbook: wood as an engineering material. The Forest Products Society, AmericaGoogle Scholar
  29. Miranda I, Sousa V, Pereira H (2011) Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci 57:171–178CrossRefGoogle Scholar
  30. Moya R, Bond B, Quesada H (2014) A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci Technol 48:411–433. CrossRefGoogle Scholar
  31. Nguila Inari G, Mounguengui S, Dumarcay S, Petrissans M, Gerardin P (2007) Evidence of char formation during wood heat treatment by mild pyrolysis. Polym Degrad Stab 92:997–1002CrossRefGoogle Scholar
  32. Niamké F, Amusant N, Charpentier J, Chaix G, Baissac Y, Boutahar N, Adima A, Coulibaly S, Allemand C (2011) Relationship between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f). Ann For Sci 68:201–211. CrossRefGoogle Scholar
  33. Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press LLC, USGoogle Scholar
  34. Simatupang MH, Rosamah E, Yamamoto K (1996) Importance of teak wood extractives to wood properties and tree breeding. Proceeding of the Conference on Forestry and Forest Products Research 2:235–246Google Scholar
  35. Simo-Tagne M, Rémond R, Rogaume Y, Zoulalian A, Perre P (2016) Characterization of sorption behavior and mass transfer properties of four central Africa tropical woos: Ayous, Sapele, Frake, Lofota. Maderas-Cienc Tecnol 18:207–226Google Scholar
  36. Skaar C (1972) Water in wood. Syracuce Wood Science Series. University Press, New YorkGoogle Scholar
  37. Sumthong P, Gonzales RRR, Verpoorte R (2006) Isolation and elucidation of quinones in Tectona grandis. Division of Pharmacognosy, Section of Metabolomics. Institute of Biology, Laiden University, NetherlandsGoogle Scholar
  38. Thulasidas PK, Bhat KM (2007) Chemical extractive compounds determining the brown-rot decay resistance of teakwood. Holz Roh Werkst 65:121–124. CrossRefGoogle Scholar
  39. Thulasidas PK, Bhat KM (2012) Mechanical properties and wood structure characteristics of 35-year old home-garden teak from wet and dry localities of Kerala, India in comparison with plantation teak. J Indian Acad Wood Sci 9:23–32CrossRefGoogle Scholar
  40. Thulasidas PK, Bhat KM, Okuma T (2006) Heartwood colour variation in home garden teak (Tectona grandis) from wet and dry localities of Kerala. India. J Trop For Sci 18:51–54Google Scholar
  41. Tsoumis G (1991) Science and technology of wood (structure, properties, utilization). Van Nostrand Reinhold, New YorkGoogle Scholar
  42. Utomo RN (2006) Anatomical structure of Perhutani teak wood of age class I from KPH Bojonegoro. Thesis, Bogor Agricultural UniversityGoogle Scholar
  43. Wahyudi I, Priadi T, Rahayu IS (2014) Karakteristik dan Sifat-Sifat Dasar Kayu Jati Unggul Umur 4 dan 5 Tahun Asal Jawa Barat. J Ilmu Pertanian Indonesia (JIPI) 19:50–56Google Scholar
  44. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277CrossRefGoogle Scholar
  45. Wijayanto A (2014) Composition chimique, propriétés antioxydantes, et propriétés antifongiques de Tectona grandis et Pinus merkusii. Dissertation, Universite de LorraineGoogle Scholar
  46. Windeisen E, Klasse A, Weigner G (2003) On the chemical characterisation of plantation teakwood from Panama. Holz Roh Werkst 61:416–418CrossRefGoogle Scholar
  47. Zobel BJ (1984) The changing quality of the world wood supply. Wood Sci Technol 18:1–17CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Dwi Erikan Rizanti
    • 1
    • 2
  • Wayan Darmawan
    • 2
  • Béatrice George
    • 1
  • André Merlin
    • 1
  • Stéphane Dumarcay
    • 1
  • Hubert Chapuis
    • 1
  • Christine Gérardin
    • 1
  • Eric Gelhaye
    • 3
  • Phila Raharivelomanana
    • 4
  • Rita Kartika Sari
    • 2
  • Wasrin Syafii
    • 2
  • Rozi Mohamed
    • 5
  • Philippe Gerardin
    • 1
    Email author
  1. 1.Université de Lorraine Inra, LERMAB F-54000NancyFrance
  2. 2.Department of Forest ProductsBogor Agricultural University, Kampus IPB DramagaBogorIndonesia
  3. 3.Université de LorraineInra, IAM, F-54000NancyFrance
  4. 4.Ecosystèmes Insulaires Océaniens UMR 241Université de la Polynésie FrançaiseTahitiFrance
  5. 5.Department of Forest Management, Faculty of ForestryUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations