Advertisement

Seasonal time-course of the above ground biomass production efficiency in beech trees (Fagus sylvatica L.)

  • Laura Heid
  • Christophe Calvaruso
  • Anjy Andrianantenaina
  • André Granier
  • Sébastien Conil
  • Cyrille B. K. Rathgeber
  • Marie-Pierre Turpault
  • Bernard Longdoz
Original Paper
Part of the following topical collections:
  1. Estimation of standing forest biomass

Abstract

Key message

In order to record the seasonal changes in aboveground biomass production (trunk and branches) in a forest, changes in wood density must be taken into account. A 60-year-old beech forest displayed a large intra-annual variability in its aboveground woody biomass production efficiency. This variation followed a seasonal trend with a maximum during the summer while gross primary production was rather low.

Context

In the current context of land use and climate change, there is a need to precisely quantify the carbon (C) balance of forest ecosystems, and more specifically, of C allocation to tree compartments.

Aims

We quantified the seasonal changes in the aboveground biomass production (aBP) of a beech forest growing on two different soils: an alocrisol and a calci-brunisol. In addition, for the alocrisol ecosystem, we assessed the existence and degree of intra-annual variability in the ratio of wood aBP to gross primary production (GPP), i.e., the wood aBP efficiency.

Methods

The study site is a 60-year-old beech forest in northeastern France. An eddy covariance tower records continuously net ecosystem exchange. To investigate the temporal changes in aBP, mini-cores were drilled and diameter at breast height measurements were taken on a monthly basis from 45 trees for both stands studied over 2014.

Results

A clear difference in aBP was observed between the two soils with the alocrisol being more productive than the calci-brunisol. For the alocrisol, both woody aBP and GPP changed over the course of the year, reaching peak values during June (6 and 12.5 gC m−2 day−1, respectively). Wood applied bias photon-to-current efficiency aboveground Biomass Production Efficiency (aBPE) also showed important intra-annual variations, ranging from 0.09 in September to 0.58 in July. Wood density varied throughout the year, and not taking it into account would have led to an overestimation of aBP by as much as 20% in April and May.

Conclusion

Our study highlights the importance of taking wood density into account for intra-annual studies of aBP. Wood aBPE cannot be considered as constant as it fluctuated from 0.09 to 0.58 throughout the year for an annual value of 0.34. The potential error in wood aBPE stemming from not taking these changes into account amounts to 15%.

Keywords

Eddy covariance GPP Beech forest Carbon allocation Biomass production Tree growth Wood density 

Notes

Acknowledgments

This work was supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12-LABXARBRE-01). The site on which this research has been performed is part of the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F (http://www.anaee-france.fr/fr/). We also thank L. Saint-André (INRA-BEF, Nancy, France) for his help for the biomass calculation, as well as B. Garnier, P. Courtois, A. Naiken, F. Geremia (INRA-EEF, Nancy, France), and the technicians from the LERFoB (INRA, Nancy, France), BEF (INRA, Nancy, France), and ANDRA for technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121:5–20.  https://doi.org/10.1016/j.agee.2006.12.002 CrossRefGoogle Scholar
  2. Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315.  https://doi.org/10.1016/S0168-1923(01)00244-1 CrossRefGoogle Scholar
  3. Aubinet M, Grelle A, Ibrom A et al (1999) Advances in ecological research. Academic press. In: Fitter AH, Raffaelli DG (eds) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology, pp 113–175Google Scholar
  4. Barford CC, Wofsy SC, Goulden ML, et al (2001) Factors controlling long- and short-term sequestration of atmospheris CO2 in a mid-latitude forest. science 294:1688-1691.  https://doi.org/10.1126/science.1062962
  5. Beziat P (2009) Effet des conditions environnementales et des pratiques culturales sur les flux de carbone, d’énergie et l’efficience de l’utilisation de l’eau dans les agrosystèmes : mesures et modélisations de la parcelle au paysage. Université Toulouse III Paul Sabatier, Thèse de doctoratGoogle Scholar
  6. Burba G, Schmidt A, Scott RL, Nakai T, Kathilankal J, Fratini G, Hanson C, Law B, McDermitt DK, Eckles R, Furtaw M, Velgersdyk M (2012) Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Glob Change Biol 18:385–399.  https://doi.org/10.1111/j.1365-2486.2011.02536.x CrossRefGoogle Scholar
  7. Calvaruso C, Kirchen G, Saint-André L, Redon PO, Turpault MP (2017) Relationship between soil nutritive resources and the growth and mineral nutrition of a beech (Fagus sylvatica) stand along a soil sequence. Catena 155:156–169.  https://doi.org/10.1016/j.catena.2017.03.013 CrossRefGoogle Scholar
  8. Campioli M, Gielen B, Göckede M, Papale D, Bouriaud O, Granier A (2011) Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest. Biogeosciences 8:2481–2492.  https://doi.org/10.5194/bg-8-2481-2011 CrossRefGoogle Scholar
  9. Campioli M, Verbeeck H, Van den Bossche J et al (2013) Can decision rules simulate carbon allocation for years with contrasting and extreme weather conditions? A case study for three temperate beech forests. Ecol Model 263:42–55.  https://doi.org/10.1016/j.ecolmodel.2013.04.012 CrossRefGoogle Scholar
  10. Campioli M, Vicca S, Luyssaert S, Bilcke J, Ceschia E, Chapin FS III, Ciais P, Fernández-Martínez M, Malhi Y, Obersteiner M, Olefeldt D, Papale D, Piao SL, Peñuelas J, Sullivan PF, Wang X, Zenone T, Janssens IA (2015) Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nat Geosci 8:843–846.  https://doi.org/10.1038/ngeo2553 CrossRefGoogle Scholar
  11. Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155.  https://doi.org/10.1111/nph.12448 CrossRefPubMedGoogle Scholar
  12. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187.  https://doi.org/10.1038/35041539 CrossRefPubMedGoogle Scholar
  13. Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, del Castillo EM, Campelo F, Vavrčík H, Camarero JJ, Bryukhanova MV, Jyske T, Gričar J, Gryc V, de Luis M, Vieira J, Čufar K, Kirdyanov AV, Oberhuber W, Treml V, Huang JG, Li X, Swidrak I, Deslauriers A, Liang E, Nöjd P, Gruber A, Nabais C, Morin H, Krause C, King G, Fournier M (2015) Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat Plants 1:15160.  https://doi.org/10.1038/nplants.2015.160 CrossRefPubMedGoogle Scholar
  14. Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625.  https://doi.org/10.1093/treephys/tps039 CrossRefPubMedGoogle Scholar
  15. Curtis PS, Vogel CS, Gough CM, Schmid HP, Su HB, Bovard BD (2005) Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytol 167:437–456.  https://doi.org/10.1111/j.1469-8137.2005.01438.x CrossRefPubMedGoogle Scholar
  16. Delpierre N, Berveiller D, Granda E, Dufrêne E (2016) Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol 210:459–470.  https://doi.org/10.1111/nph.13771 CrossRefPubMedGoogle Scholar
  17. DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167.  https://doi.org/10.1111/j.1365-2486.2007.01365.x CrossRefGoogle Scholar
  18. Drake JE, Davis SC, Raetz LM, DeLUCIA EH (2011) Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Glob Change Biol 17:1522–1535.  https://doi.org/10.1111/j.1365-2486.2010.02342.x CrossRefGoogle Scholar
  19. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, William Munger J, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77.  https://doi.org/10.1016/S0168-1923(00)00235-5 CrossRefGoogle Scholar
  20. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69.  https://doi.org/10.1016/S0168-1923(00)00225-2 CrossRefGoogle Scholar
  21. Finnigan JJ (2004) A re-evaluation of long-term flux measurement techniques part II: coordinate systems. Bound-Layer Meteorol 113:1–41.  https://doi.org/10.1023/B:BOUN.0000037348.64252.45
  22. Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci 104:14014–14019.  https://doi.org/10.1073/pnas.0706518104 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giardina CP, Ryan MG, Binkley D, Fownes JH (2003) Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob Change Biol 9:1438–1450.  https://doi.org/10.1046/j.1365-2486.2003.00558.x CrossRefGoogle Scholar
  24. Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186CrossRefGoogle Scholar
  25. Goulden ML, Mcmillan AMS, Winston GC et al (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Change Biol 17:855–871.  https://doi.org/10.1111/j.1365-2486.2010.02274.x CrossRefGoogle Scholar
  26. Guillemot J, Francois C, Hmimina G, et al (2017) Environmental control of carbon allocation matters for modelling forest growth. New Phytol 214:180–193.  https://doi.org/10.1111/nph.14320
  27. Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008) Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann For Sci 65:704–704.  https://doi.org/10.1051/forest:2008052 CrossRefGoogle Scholar
  28. Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, le Dantec V, le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young beech forest. Funct Ecol 14:312–325.  https://doi.org/10.1046/j.1365-2435.2000.00434.x
  29. Harroué M, Cornu E, Rathgeber CKB (2011) Méthodes de prélèvement et de préparation des échantillons pour l’étude de l’activité cambiale et de la formation du bois. Cah Tech INRA 73:45–62Google Scholar
  30. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergover mental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  31. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob Biogeochem Cycles 16:1126. doi: 10.1029/2001GB001813, 73-1, 73-9Google Scholar
  32. Kindler R, Siemens J, Kaiser K et al (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185.  https://doi.org/10.1111/j.1365-2486.2010.02282.x CrossRefGoogle Scholar
  33. Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Bound-Layer Meteorol 112:503–523.  https://doi.org/10.1023/B:BOUN.0000030653.71031.96 CrossRefGoogle Scholar
  34. Klumpp K, Soussana J-F, Falcimagne R (2007) Effects of past and current disturbance on carbon cycling in grassland mesocosms. Agric Ecosyst Environ 121:59–73.  https://doi.org/10.1016/j.agee.2006.12.005 CrossRefGoogle Scholar
  35. Knohl A, Schulze E-D, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric For Meteorol 118:151–167.  https://doi.org/10.1016/S0168-1923(03)00115-1 CrossRefGoogle Scholar
  36. Lawrence D (2001) Nitrogen and phosphorus enhance growth and luxury consumption of four secondary forest tree species in Borneo. J Trop Ecol 17:859–869.  https://doi.org/10.1017/S0266467401001638 CrossRefGoogle Scholar
  37. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315.  https://doi.org/10.2307/2389824
  38. Longdoz B, Gross P, Granier A (2008) Multiple quality tests for analysing CO2 fluxes in a beech temperate forest. Biogeosciences 5:719–729.  https://doi.org/10.5194/bg-5-719-2008 CrossRefGoogle Scholar
  39. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740.  https://doi.org/10.1046/j.1365-3040.1999.00453.x CrossRefGoogle Scholar
  40. Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387.  https://doi.org/10.1126/science.1089543
  41. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (face) experiments. Annu Rev Ecol Evol Syst 42:181–203.  https://doi.org/10.1146/annurev-ecolsys-102209-144647 CrossRefGoogle Scholar
  42. Quéré CL, Andrew RM, Canadell JG, et al (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649.  https://doi.org/10.5194/essd-8-605-2016
  43. R Core Team (2013) R: a language and environment for statistical computing. R foundation for Statistical Computing, ViennaGoogle Scholar
  44. Rathgeber CBK, Cuny HE, Fonti P (2016) Biological basis of tree-ring formation: a crash course. Front Plant Sci 7:.  https://doi.org/10.3389/fpls.2016.00734
  45. Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance. Springer Netherlands, pp 59–83Google Scholar
  46. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439.  https://doi.org/10.1111/j.1365-2486.2005.001002.x CrossRefGoogle Scholar
  47. Rossi S, Menardi R, Anfodillo T (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97.  https://doi.org/10.1163/22941932-90000139 CrossRefGoogle Scholar
  48. RP (2008) Référentiel pédologique 2008, Association française pour l’étude du sol (Afes), QuaeGoogle Scholar
  49. Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res Atmospheres 102:28871–28883.  https://doi.org/10.1029/97JD01236 CrossRefGoogle Scholar
  50. Ryan MG, Gower ST, Hubbard RM, et al (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140.  https://doi.org/10.1007/BF00317276
  51. Schiestl-Aalto P, Kulmala L, Mäkinen H, Nikinmaa E, Mäkelä A (2015) CASSIA—a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytol 206:647–659.  https://doi.org/10.1111/nph.13275 CrossRefPubMedGoogle Scholar
  52. Sheriff DW, Nambiar EKS, Fife DN (1986) Relationships between nutrient status, carbon assimilation and water use efficiency in Pinus radiata (D. Don) needles. Tree Physiol 2:73–88.  https://doi.org/10.1093/treephys/2.1-2-3.73 CrossRefPubMedGoogle Scholar
  53. Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343.  https://doi.org/10.1016/j.tplants.2015.03.015 CrossRefPubMedGoogle Scholar
  54. Trumbore S (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12:141–153.  https://doi.org/10.1111/j.1365-2486.2006.01067.x CrossRefGoogle Scholar
  55. Valentini R, De ANGELIS P, Matteucci G et al (1996) Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Glob Change Biol 2:199–207.  https://doi.org/10.1111/j.1365-2486.1996.tb00072.x CrossRefGoogle Scholar
  56. Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS III, Ciais P, Heinemeyer A, Högberg P, Kutsch WL, Law BE, Malhi Y, Papale D, Piao SL, Reichstein M, Schulze ED, Janssens IA (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15:520–526.  https://doi.org/10.1111/j.1461-0248.2012.01775.x CrossRefPubMedGoogle Scholar
  57. Wu J, Larsen KS, van der Linden L, Beier C, Pilegaard K, Ibrom A (2013) Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agric For Meteorol 181:94–107.  https://doi.org/10.1016/j.agrformet.2013.07.012 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Laura Heid
    • 1
    • 2
  • Christophe Calvaruso
    • 3
  • Anjy Andrianantenaina
    • 1
  • André Granier
    • 1
  • Sébastien Conil
    • 4
  • Cyrille B. K. Rathgeber
    • 1
  • Marie-Pierre Turpault
    • 5
  • Bernard Longdoz
    • 1
    • 6
  1. 1.Université de Lorraine, AgroParisTech, Inra, SilvaNancyFrance
  2. 2.DRD, ANDRABureFrance
  3. 3.EcoSustain, Environmental Engineering OfficeResearch and DevelopmentKanfenFrance
  4. 4.DRD-GES, ANDRABureFrance
  5. 5.Inra, BEFNancyFrance
  6. 6.TERRA, Research Centre, Atmosphere-Ecosystem Exchanges, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium

Personalised recommendations