Advertisement

Local basal area affects needle litterfall, nutrient concentration, and nutrient release during decomposition in Pinus halepensis Mill. plantations in Spain

  • Teresa Bueis
  • Felipe Bravo
  • Valentín Pando
  • María Belén Turrión
Article
Part of the following topical collections:
  1. Mediterranean Pines

Abstract

Key message

Stand density has a positive effect on C, K and Mg concentration in needle litterfall and a negative one on C, N, Ca, K, Mg, P, S, Zn, and Cu release from needle litter. Consequently, forest management practices such as thinning decrease nutrient concentration in needle litterfall and accelerate nutrient release from decomposing needles in Pinus halepensis plantations in Spain.

Context

Silvicultural practices usually include stand density reduction resulting in changes in litterfall and litter decomposition rates. Little is known about the effect on nutrient concentrations in litterfall and nutrient release during decomposition even when this is the main path of nutrient return to soils.

Aims

The aims of the study are to evaluate the seasonal pattern of nutrient concentration in litterfall, to study how nutrients are released from needle litterfall during decomposition, and to assess whether local basal area of the stand affects nutrient concentration of litterfall and nutrient release during litter decomposition.

Methods

Eight plots were established on each of four stands covering the widest range in local basal area. A littertrap and 15 litterbags were placed on each plot. Periodically, needle litterfall and litter contained in the litterbags were analyzed for C, N, Ca, K, Mg, P, S, Fe, Cu, Mn, and Zn.

Results

Local basal area had a positive effect on C, K, and Mg concentration in needle litterfall and a negative effect on the release of all the nutrients studied but Fe and Mn during the first 2 years of litter decomposition.

Conclusion

Density management of stands has an impact on nutrient cycling, reducing nutrient concentration in needle litterfall, and accelerating nutrient release during decomposition.

Keywords

Nutrient cycle Litterbag Littertrap Nutrient immobilization Nutrient release 

Notes

Acknowledgments

The authors are grateful to Elisa Mellado and Olga López for their assistance in the field work and Carmen Blanco and Juan Carlos Arranz for their advice in laboratory analysis.

Funding

This work was supported by the Ministry of Economy and Competitiveness of the Spanish Government (AGL2011-29701-C02-02 and AGL2014-51964-C2-1-R) and the University of Valladolid and Banco Santander (predoctoral grant to T. Bueis).

Compliance with ethical standards

Statement on data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

13595_2018_699_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)
13595_2018_699_MOESM2_ESM.docx (29 kb)
ESM 2 (DOCX 29 kb)
13595_2018_699_MOESM3_ESM.docx (28 kb)
ESM 3 (DOCX 28 kb)
13595_2018_699_MOESM4_ESM.docx (30 kb)
ESM 4 (DOCX 30 kb)

References

  1. Blanco JA, Bosco Imbert J, Castillo FJ (2011) Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106(3):397–414.  https://doi.org/10.1007/s10533-010-9518-2 CrossRefGoogle Scholar
  2. Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. Forest Ecol Manag 237(1-3):342–352.  https://doi.org/10.1016/j.foreco.2006.09.057 CrossRefGoogle Scholar
  3. Blanco JA, Imbert JB, Castillo FJ (2008) Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. Forest Ecol Manag 256(11):1840–1852.  https://doi.org/10.1016/j.foreco.2008.07.011 CrossRefGoogle Scholar
  4. Bueis T, Bravo F, Pando V, Turrion MB (2017) Influencia de la densidad del arbolado sobre el desfronde y su reciclado en pinares de repoblación del norte de España. Bosque 38(2):401–407.  https://doi.org/10.4067/S0717-92002017000200017 CrossRefGoogle Scholar
  5. Cotillas M, Sabaté S, Gracia C, Espelta JM (2009) Growth response of mixed Mediterranean oak coppices to rainfall reduction: could selective thinning have any influence on it? Forest Ecol Manag 258(7):1677–1683.  https://doi.org/10.1016/j.foreco.2009.07.033 CrossRefGoogle Scholar
  6. Chase CW, Kimsey MJ, Shaw TM, Coleman MD (2016) The response of light, water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir forests. Forest Ecol Manag 363:98–109.  https://doi.org/10.1016/j.foreco.2015.12.014 CrossRefGoogle Scholar
  7. Desanto AV, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in 5 different coniferous forests. Soil Biol Biochem 25(10):1423–1433.  https://doi.org/10.1016/0038-0717(93)90057-i CrossRefGoogle Scholar
  8. Duchesne L, Ouimet R, Camiré C, Houle D (2001) Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada. Can J For Res 31(2):333–344.  https://doi.org/10.1139/cjfr-31-2-333 CrossRefGoogle Scholar
  9. Entry JA, Rose CL, Cromack K (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a douglas fir ecosystem. Soil Biol Biochem 23(3):285–290.  https://doi.org/10.1016/0038-0717(91)90065-R CrossRefGoogle Scholar
  10. Escudero A, del Arco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos 49(1):11–14.  https://doi.org/10.2307/3565549 CrossRefGoogle Scholar
  11. Gebhardt T, Häberle K-H, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric For Meteorol 197:235–243.  https://doi.org/10.1016/j.agrformet.2014.05.013 CrossRefGoogle Scholar
  12. He J, Yang W, Xu L, Ni X, Li H, Wu F (2016) Copper and zinc dynamics in foliar litter during decomposition from gap center to closed canopy in an alpine forest. Scand J Forest Res 31(4):355–367.  https://doi.org/10.1080/02827581.2015.1078405 CrossRefGoogle Scholar
  13. Jarrell WM, Beverly RB (1981) The dilution effect in plant nutrition studies. Adv Agron 34:197–224.  https://doi.org/10.1016/S0065-2113(08)60887-1 CrossRefGoogle Scholar
  14. Kim C (2016) Basal area effects on a short-term nutrient status of litter fall and needle litter decomposition in a Pinus densiflora stand. J Ecol Environ 39(1):51–60.  https://doi.org/10.5141/ecoenv.2016.006 CrossRefGoogle Scholar
  15. Kim C, Byun JK, Park JH, Ma HS (2013) Litter fall and nutrient status of green leaves and leaf litter at various compound ratios of fertilizer in sawtooth oak stands, Korea. Ann For Res 56:339–350.  https://doi.org/10.15287/afr.2013.35 Google Scholar
  16. Kunhamu TK, Kumar BM, Viswanath S (2009) Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India? Can J For Res 39(4):792–801.  https://doi.org/10.1139/x09-008 CrossRefGoogle Scholar
  17. Lado-Monserrat L, Lidon A, Bautista I (2015) Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. Eur J For Res 134(5):833–844.  https://doi.org/10.1007/s10342-015-0893-z CrossRefGoogle Scholar
  18. Laskowski R, Niklinska M, Maryanski M (1995) The dynamics of chemical-elements in forest litter. Ecology 76(5):1393–1406.  https://doi.org/10.2307/1938143 CrossRefGoogle Scholar
  19. Llorente M, Turrion MB (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J For Res 129(1):73–81.  https://doi.org/10.1007/s10342-008-0249-z CrossRefGoogle Scholar
  20. Montero G, Cañellas I, Ruiz-Peinado R (2001) Growth and yield models for Pinus halepensis Mill. Inv Agrar-Sist Rec F 10:179–201.  https://doi.org/10.5424/720 Google Scholar
  21. Nambiar EKS, Fife DN (1991) Nutrient retranslocation in temperate conifers. Tree Physiol 9(1-2):185–207.  https://doi.org/10.1093/treephys/9.1-2.185 CrossRefGoogle Scholar
  22. Navarro FB, Romero-Freire A, Del Castillo T, Foronda A, Jimenez MN, Ripoll MA, Sanchez-Miranda A, Huntsinger L, Fernandez-Ondono E (2013) Effects of thinning on litterfall were found after years in a Pinus halepensis afforestation area at tree and stand levels. Forest Ecol Manag 289:354–362.  https://doi.org/10.1016/j.foreco.2012.09.026 CrossRefGoogle Scholar
  23. Ninyerola M, Pons i Fernández X, Roure JM (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BarcelonaGoogle Scholar
  24. Ouro G, Perez-Batallon P, Merino A (2001) Effects of sylvicultural practices on nutrient status in a Pinus radiata plantation: nutrient export by tree removal and nutrient dynamics in decomposing logging residues. Ann For Sci 58(4):411–422.  https://doi.org/10.1051/forest:2001134 CrossRefGoogle Scholar
  25. Pan X, Song Y, Liu GF, Hu YK, Ye XH, Cornwell WK, Prinzing A, Dong M, Cornelissen JHC (2015) Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species. Sci Rep-UK 5:13217.  https://doi.org/10.1038/srep13217 CrossRefGoogle Scholar
  26. Potter CS, Ragsdale HL, Swank WT (1991) Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. J Ecol 79(1):97–115.  https://doi.org/10.2307/2260786 CrossRefGoogle Scholar
  27. Pourhassan N, Bruno S, Jewell MD, Shipley B, Roy S, Bellenger J-P (2016) Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma 273:25–31.  https://doi.org/10.1016/j.geoderma.2016.03.018 CrossRefGoogle Scholar
  28. Prescott CE, Blevins LL, Staley C (2004) Litter decomposition in British Columbia forests: controlling factors and influences of forestry activities. JEM 5:44–57Google Scholar
  29. Quilchano C, Haneklaus S, Gallardo JF, Schnug E, Moreno G (2002) Sulphur balance in a broadleaf, non-polluted, forest ecosystem (central-western Spain). Forest Ecol Manag 161(1-3):205–214.  https://doi.org/10.1016/S0378-1127(01)00483-2 CrossRefGoogle Scholar
  30. Reuter DJ, Robinson BJ (1997) Plant analysis: an interpretation manual. CSIRO Publishing, CollingwoodGoogle Scholar
  31. Roig S, del Rio M, Canellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. Forest Ecol Manag 206(1-3):179–190.  https://doi.org/10.1016/j.foreco.2004.10.068 CrossRefGoogle Scholar
  32. Sardans J, Peñuelas J, Roda F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees-Struct Funct 19:233–250.  https://doi.org/10.1007/s00468-004-0374-3 CrossRefGoogle Scholar
  33. SAS (2013) SAS/AF® 9.4 Procedure Guide, 2nd edn. Cary, NC, USAGoogle Scholar
  34. Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, Vose JM (2016) Forest biogeochemistry in response to drought. Glob Chang Biol 22(7):2318–2328.  https://doi.org/10.1111/gcb.13105 CrossRefPubMedGoogle Scholar
  35. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. In: Anderson DJ, Greig-Smith P, Pitelka FA (eds) Studies in ecology, vol 5. University of California Press, Berkeley, p 372Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sustainable Forest Management Research InstitutePalenciaSpain
  2. 2.Departamento de Ciencias Agroforestales. E.T.S. Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain
  3. 3.Departamento de Producción Vegetal y Recursos Forestales. E.T.S. Ingenierías AgrariasUniversidad de ValladollidPalenciaSpain
  4. 4.Departamento de Estadística e Investigación Operativa. E.T.S. Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain

Personalised recommendations