The role of extractives in the natural durability of the heartwood of Dicorynia guianensis Amsh: new insights in antioxydant and antifungal properties

  • Jean-Baptiste Say Anouhe
  • Florence Bobelé Niamké
  • Milcard Faustin
  • David Virieux
  • Jean-Luc Pirat
  • Augustin Amissa Adima
  • Seraphin Kati-Coulibaly
  • Nadine Amusant
Original Paper


Key message

The natural durability of Dicorynia guianensis Amsh ’s Heartwood is conferred by the high content of antioxidant phenolic compounds, especially tannins and flavonoids combined with the presence of fungistatic alkaloids. The content of phenolic compounds increases according to the natural durability classes, from durable wood (class 2) to moderately durable wood (class 3) and correlated to the antioxidant capacity.


The heartwood of Dicorynia guianensis Amsh is resistant to white rot fungi decay, but the mechanism of this natural durability is not fully elucidated.


Biochemical studies were carried out in order to better understand the role of extractives in natural durability of D. guianensis.


The powders from durable and moderately durable heartwood were extracted with methanol, ethanol, and hot water. The quantity of total phenols, tannins, and flavonoids as well as antioxidant activity, evaluated by 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) were determined using colorimetric methods. Antifungal activity was assessed by using two white rot fungi. The bioactive fractions and compounds were obtained using bio-guided fractionation, HPLC isolation, MS and RMN spectroscopic analyses.


Durable woods contain higher amounts of heartwood extract and antioxidant activity. Antioxidant activity was highly correlated with the content of phenolics. The purification of the most antioxidant fraction FII affords the characterization of (+)-catechin (−)-epicatechin, neoastilbin, astilbin, and isoastilbin. Alkaloid fraction FIII exhibits dose-dependent fungistatic activity against Pycnoporus sanguineus Linnaeus and Trametes versicolor Quelet.


Phenolic antioxidants and fungistatic alkaloids positively impact the natural durability of D. guianensis.


Dicorynia guianensis Heartwood Natural durability Antifungal Antioxidant Phenols Alkaloid 



This work was financially supported by the Cooperation and Cultural Action (SCAC) of the Embassy of France in Côte d’Ivoire, CIRAD and French National Research Agency (CEBA, ref. ANR-10-LABX-0025) as part of the “Investissement d’Avenir” program.

Co-author contributions

J.B Anouhe assured the conception and realization of all chemical and antioxidant experiments. He wrote the first draft of the paper. Nadine Amusant supervised the experimental work and coordinated the research project. Florence Niamké coordinated the antifungal activity tests and helped in writing and editing the manuscript. David Virieux and Jean-Luc Pirat assured the training of J-B Anouhe on spectroscopic measurements. Milcard Faustin, Amissa Adima, and Seraphin Kati-coulibaly were involved in the critical reading of the results. The final correction of the paper was read and approved by all authors.

Supplementary material

13595_2018_691_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1216 kb)


  1. Afnor NF EN 350 (2016) Durabilité du bois et des matériaux dérivés du bois - Méthodes d'éssai et de classification de la durabilité vis-à-vis des agents biologiques du bois et des matériaux dérivés du bois - Durabilité du bois et des matériaux dérivés du bois - Méthodes d'éssai et de classification de la durabilité à l'eau du bois et des matériaux à base de boisGoogle Scholar
  2. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76. CrossRefPubMedGoogle Scholar
  3. Amusant N, Beauchene J, Fournier M, Janin G, Thevenon MF (2004) Decay resistance in Dicorynia guianensis Amsh: analysis of inter-tree and intra-tree variability and relations with wood colour. Ann For Sci 61(4):373–380. CrossRefGoogle Scholar
  4. Amusant N, Anouhé J-B, Amissa A, Beauchène J, Niamké F, Nicolinni E (2013) Tree crown architecture: a tool for decay resistance evaluation. IRG/WP 16-108, annual meeting, Stockholm, pp 1–12Google Scholar
  5. Amusant N, Nigg N, Thibaut B, Beauchene J (2014) Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacencsis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) wild. Int Biodeterior Biodegrad 94:103–108. CrossRefGoogle Scholar
  6. Anouhe J-B, Adima A, Niamke B, Stien D, Amian B, Blandinières P-A, Virieux D, Kati-Coulibaly S, Pirat JL, Amusant N (2015) Two new β carboline type alkaloids from Dicorynia guianensis heartwood. Phytochem Lett 12:158–166. CrossRefGoogle Scholar
  7. Benhamou N, Rey P (2012) Stimulateurs des défenses naturelles des plantes : une nouvelle stratégie phytosanitaire dans un contexte d’écoproduction durable. I. Principes de la résistance induite. Phytoprotection 92(1):1–23. CrossRefGoogle Scholar
  8. Berlioz E (2012) Economy of the forest-wood sector in Guyana. French Academy of Agriculture, pp 1–3Google Scholar
  9. Chang S, Wu J, Wang S, Kang P, Yang N, Shyur F (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49(7):3420–3424. CrossRefPubMedGoogle Scholar
  10. Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J, Potts A, Guan F, Wang J (2016) Cerebroprotection of flavanol (−)-epicatechin after traumatic brain injury via Nrf2-dependent and – independent pathways. Free Radic Biol Med 92:15–28. CrossRefPubMedGoogle Scholar
  11. Dickson A, Houghton J, Hylands J (2007) Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 68(10):1436–1441. CrossRefPubMedGoogle Scholar
  12. Gochev V, Krastanov A (2007) Fungal laccases. Bulg J Agric Sci 13:75–83Google Scholar
  13. Gülçin I, Bursal E, Hilal S, Bilsel M, Ahmet C, Gören A (2010) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48(8-9):2227–2238. CrossRefPubMedGoogle Scholar
  14. Huang Q, Cheng Z, Shi H, Xin W, Wang T, Yu L (2011) Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J Agric Food Chem 59(9):4562–4569. CrossRefPubMedGoogle Scholar
  15. IEDOM: Institut d’Emission des Départements d’Outre-Mer (2014) Guyane annual report, 186 pGoogle Scholar
  16. Kadir R, Hale M (2016) Antioxidant potential and content of phenolic compounds in extracts of twelve selected Malaysian commercial wood species. Eur J Wood Prod 1–8Google Scholar
  17. Kawamura F, Ramle S, Sulaiman O, Hashim R, Ohara S (2011) Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur J Wood Prod 69(2):207–221. CrossRefGoogle Scholar
  18. Ket L, Kang C (2012) Influence of different extraction solvents on lipophilic extractives of Acacia Hybrid in different wood portions. Asian J Appl Sci 5:107–116CrossRefGoogle Scholar
  19. Kirker G, Blodgett A, Arango R, Lebow K, Clausen C (2013) The role of extractives in naturally durable wood species. Int Biodeterior Biodegrad 82:53–55. CrossRefGoogle Scholar
  20. Lee J, Oh H, Yang H, Baek N, Kim S-H, Cho H, Ki D (2009) Cytotoxic alkaloids from the wood of Picrasma Quassioides. J Korean Soc Appl Biol Chem 52(6):663–667. CrossRefGoogle Scholar
  21. Lekounougou S, Mounguengui S, Dumarcay S, Rose C, Courty P, Garbaye J, Gerardin P, Jacquot P, Gelhaye E (2008) Initial stages of Fagus sylvatica wood colonization by white – rot basidiomycetes Trametes versicolor. Enzymatic characterization. Int Biodeterior Biodegrad 61(4):287–293. CrossRefGoogle Scholar
  22. Li G, Jiang W, Yue X, Qu G, Tian J, Wu J, Fu F (2009) Effect of astilbin on experimental diabetic nephropathy in vivo and in vitro. Planta Med 75(14):1470–1475. CrossRefPubMedGoogle Scholar
  23. Lolita T, Zanda K, Ruta G (2012) Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). World Acad Sci Eng Technol 64:903–908Google Scholar
  24. Luís Â, Neiva D, Pereira H, Gominho J, Domingue F, Paula D (2014) Stumps of Eucalyptus globulus as a source of antioxidants and antimicrobial polyphenols. Molecules 19(10):16428–16446. CrossRefPubMedGoogle Scholar
  25. Lukumandaru G (2013) The natural termite resistance of teak wood grown in community 424 forest. J Ilmu Teknol Kayu Tropis 11:131–139Google Scholar
  26. Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703(1):8–18. CrossRefPubMedGoogle Scholar
  27. Muzolf-Panek M, Gliszczynska-Swigło A, Szymusiak A, Szymusiak H, Tyrakowska B (2012) The influence of stereochemistry on the antioxidant properties of catechin epimers. Eur Food Res Technol 235(6):1001–1009. CrossRefGoogle Scholar
  28. Nascimento M, Santana D, Maranhão C, Oliveira L, Bieber L (2013) Phenolic extractives and natural resistance of wood. In: Chamy R, Rosenkranz F (eds) Biodegradation – Life of Science, 349–370 pGoogle Scholar
  29. Niamké B, Amusant N, Charpentier J-P, Chaix G, Baissac Y, Boutahar N, Adima A, Kati-Coulibaly S, Jay-Allemand C (2011) Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.) Ann For Sci 68(1):201–211. CrossRefGoogle Scholar
  30. Niamké B, Amusant N, Stien D, Chaix G, Lozano Y, Kadio A, Lemenager N, Goh D, Adima A, Kati-coulibaly S, Jay-allemand C (2012) Dihydroxy-epiiso- catalponol, a new naphthoquinone from Tectona grandis L.f. heartwood, and fungicidal activity. Int Biodeterior Biodegrad 74:93–98. CrossRefGoogle Scholar
  31. Paradis S, Guibal D, Vernay M, Beauchêne J, Brancheriau L, Chalon I, Daigremont C, Détienne P, Fouquet D, Langbour P, Lotte S, Mejean C, Thévenon M.F, Thibaut A, Gérard J (2011) Caractéristiques technologiques de 245 essences tropicales et tempérées. Tropix 7.0. CIRAD – (CD-Rom)Google Scholar
  32. Petacci F, Freitas S, Brunetti I, Khalil N (2010) Inhibition of peroxidase activity and scavenging of reactive oxygen species by astilbin isolated from Dimorphandra mollis (Fabaceae, Caesalpinioideae). Biol Res 43(1):63–74CrossRefPubMedGoogle Scholar
  33. Pietarinen S, Willfor M, Virkstrom F, Holmbom B (2006) Aspen knots, a rich source of flavonoids. Wood Sci Technol 26:245–258CrossRefGoogle Scholar
  34. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10):1231–1237. CrossRefPubMedGoogle Scholar
  35. Rhouma-Martin G (2013) Enzymatic oligomerization of flavonoids and evaluation of the biological activities of synthesized oligomers. Doctoral Thesis in Biological Sciences and Biotechnologies. University of Lorraine, 196 pGoogle Scholar
  36. Rodrigues A, Theodoro T, Eparvier V, Basset C, Silva R, Beauchene J, Espindola S, Stien D (2010) Search for antifungal compounds from the wood of durable tropical trees. J Nat Prod 73(10):1706–1707. CrossRefPubMedGoogle Scholar
  37. Royer M, Stien D, Beauchêne J, Herbette G, McLean J-P, Thibaut A, Thibaut B (2010) Chemical extractives of the tropical wood Wallaba are natural anti-swelling agents. Holzforschung 64:211–215CrossRefGoogle Scholar
  38. Royer M, Diouf N, Stevanovic T (2011) Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts. Food Chem Toxicol 49(9):2180–2188. CrossRefPubMedGoogle Scholar
  39. Royer M, Maria P, Martha E, Niokhor D, Tatjana T (2013) Study of nutraceuticals, nutricosmetics and cosmeceutical potentials of polyphenols bark extracts from Canadian forest species. PharmaNutrition 6:1–10Google Scholar
  40. Salido S, Pérez-Bonilla M, Adams P, Altarejos J (2015) Phenolic components and antioxidant activity of wood extracts from 10 main Spanish olive cultivars. J Agric Food Chem 63(29):6493–64500. CrossRefPubMedGoogle Scholar
  41. Schultz T, Nicholas D (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54(1):47–52. CrossRefPubMedGoogle Scholar
  42. Sergent T, Kohnen S, Jourez B, Beauve C, Schneider J, Vincke C (2014) Characterization of black locust (Robinia pseudoacacia L.) heartwood extractives: identification of resveratrol and picéatannol. Wood Sci Technol 48(5):1005–1017. CrossRefGoogle Scholar
  43. Shabbir G, Anwar F, Sultana B, Khalid M, Afzal M, Khan Q, Ashrafuzzaman M (2011) Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.] Molecule 16(12):7302–7319. CrossRefGoogle Scholar
  44. Shu-Hua Q, Da-Gang W, Yun-Bao M, Xiao-Dong L (2003) A novel flavane from Carapa Guianensis. Acta Bot Sin 45:1129–1133Google Scholar
  45. Singleton V, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Methods Enzymol 299:152–178. CrossRefGoogle Scholar
  46. Tanaka H, Yoshida G, Baba Y, Matsumura K, Wasada H, Murata J, Agawa M, Itakura S, Enoki A (2007) Characterization of a hydroxyl radical producing glycoprotein and its presumptive genes from the white rot Basidiomycetes Phanerochaete chrysosporium. J Biotechnol 128(3):500–511. CrossRefPubMedGoogle Scholar
  47. Taylor M, Gartner B, Morrell J, Tsunoda K (2006) Effects of heartwood extractive fractions of Thuja Plicata and Chamaecyparis nootkatensis on wood degradation by termites or fungi. J Wood Sci 52(2):147–153. CrossRefGoogle Scholar
  48. Treml J, Šmejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals, comprehensive reviews. Food Sci Food Saf 15(4):720–738. CrossRefGoogle Scholar
  49. Xiang Z, Qiang X, Jian-Xin L, Ting C (2009) Structural revision of two flavanonols glycosides from Smilax glabra. Planta Med 75:654–655CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Baptiste Say Anouhe
    • 1
  • Florence Bobelé Niamké
    • 2
  • Milcard Faustin
    • 3
  • David Virieux
    • 4
  • Jean-Luc Pirat
    • 4
  • Augustin Amissa Adima
    • 2
  • Seraphin Kati-Coulibaly
    • 1
  • Nadine Amusant
    • 3
  1. 1.Laboratoire de Nutrition et PharmacologieUFR Biosciences, Université Felix Houphouët Boigny de Cocody-AbidjanAbidjan 22Côte d’Ivoire
  2. 2.LAPISEN, Groupe de recherche en Chimie des Eaux et des Substances NaturellesInstitut National Polytechnique Houphouët BoignyYamoussoukroCôte d’Ivoire
  3. 3.CIRAD, UMR EcoFoG, AgroParisTech, CNRS, INRA, CIRADUniversité des Antilles, Université de GuyaneCayenneFrance
  4. 4.AM2N, Institut Charles GerhardtUMR 5253MontpellierFrance

Personalised recommendations