Genetic monitoring of traditional chestnut orchards reveals a complex genetic structure

Original Paper


Key message

This study presents the results of a systematic genetic analysis between wild and cultivated chestnuts in an orchard in southern Spain, highlighting a complex structure and considerable genetic diversity and opening the possibility to generalize this approach to other Mediterranean orchards.


Tree genetic monitoring offers a good opportunity to evaluate populations and preserve their long-term adaptive evolutionary potential. Chestnut is a multipurpose species of high economic importance in the Mediterranean basin and considered an example of integration between natural and man-driven distribution of diversity under changing environmental and historical conditions. Due to its multipurpose characteristics, man influenced its populations (grafting/sexual propagation) and a complex genetic structure is expected.


We monitored the trees of a chestnut orchard for studying the genetic diversity and relationship in grafts and rootstocks and detecting possible response in its adaptive potential.


For this, morphological traits and genomic and genic microsatellite markers were used.


Chestnut trees showed considerable genetic structure, with high level of clonality in the varieties and genetic diversity in rootstocks. The similarity analysis revealed a different clustering pattern for varieties, detecting higher variability for genomic microsatellite markers. Rootstocks harboured a high level of diversity, not previously described, and not contained in the genetic information from populations and varieties from the same region.


Results contribute to understanding the human role in the management of chestnut and demonstrate that rootstocks constitute an unexploited reservoir of variation valuable for conservation strategies against stress factors and future and unpredictable environmental changes.


Castanea sativa Genetic resources On farm conservation Clonality Rootstocks 

Supplementary material

13595_2016_610_MOESM1_ESM.pdf (93 kb)
ESM 1(PDF 92 kb)
13595_2016_610_MOESM2_ESM.pdf (92 kb)
ESM 2(PDF 92 kb)


  1. Alfaro R, Fady B, Vendramin GG, Dawson I, Fleming RA, Sáenz-Romero C, Linding-Cisneros RA, Murdok T, Vicenti B, Navarro CM, Skroppa T, Baldenelli G, El-Kassaby Y, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecol Manag 333:76–87CrossRefGoogle Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709CrossRefPubMedGoogle Scholar
  3. Aravanopoulos FA (2011) Genetic monitoring in natural perennial plant populations. Botany 89:75–81CrossRefGoogle Scholar
  4. Buck EJ, Russell K, Hadonou M, James CJ, Blakesley D (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241CrossRefGoogle Scholar
  5. Crandall BS, Gravatt GF, Ryan MM (1945) Root disease of Catanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi. Phytopathology 35:162e80Google Scholar
  6. Dinis LT, Peixoto F, Pinto T, Costa R, Bennett RN, Gomes-Laranjo J (2011) Study of morphological and phenological diversity in chestnut trees (Judia’ variety) as a function of temperature sum. Environ Exp Bot 70:110–120CrossRefGoogle Scholar
  7. Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F et al (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genom 11:570CrossRefGoogle Scholar
  8. Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  10. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  11. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fernandez-Lopez J, Vasquez-Ruiz-de-Occenda R, Diaz-Vasquez R, Pereira-Lorenzo S (2001) Evaluation of resistance of Castanea sp. clones to Phytophthora sp. using excised chestnut shoots. For Snow Landscape Res 76:451–454Google Scholar
  13. Gallardo F (2002) Aprovechamiento tradicional del Castaño (Castanea sativa Mill.) en el Parque Natural Sierra Norte de Sevilla. Su Problemática. Constantina. III Congreso Forestal EspañolGoogle Scholar
  14. Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agroforest Syst 61:5–17Google Scholar
  15. Glaubitz JC, Moran GF (2000) Genetic tools: the use of biochemical and molecular markers. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. CSIRO Publishing, Australia, pp 39–52Google Scholar
  16. Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50:1089–1103CrossRefPubMedGoogle Scholar
  17. Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjær ED, Loo J, Ramamonjisoa L, Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecol Manag 333:35–51CrossRefGoogle Scholar
  18. Grossmann A, Romane F (2004) Final report EU project CASCADE EVK-2-CT-1999–00000. Accessed 4 April 2016
  19. Hoffman AA, Willi Y (2008) Detecting genetic responses to environmental change. Nature Rev Genet 9:421–432CrossRefGoogle Scholar
  20. Hubisz MJ, Falush D, Stephen M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332CrossRefGoogle Scholar
  21. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodal in analysis of population structure. Bioinformatics 14:1801–1806CrossRefGoogle Scholar
  22. Laikre L, Larsson LC, Palmé A, Charlier J, Josefsson M, Ryman N (2008) Potentials for monitoring gene level biodiversity: using Sweden as an example. Biodivers Conserv 17:893–910CrossRefGoogle Scholar
  23. Lynch M (1990) The similarity index and DNA fingerprint. Mol Biol Evol 7:478–484PubMedGoogle Scholar
  24. Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breeding 11:127–136CrossRefGoogle Scholar
  25. Marinoni D, Akkak A, Beltramo C, Guaraldo P, Boccacci P, Bounous G, Ferrara AM, Ebone A, Viotto E, Botta R (2013) Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy). Tree Genet Genomes 9:1017–1030CrossRefGoogle Scholar
  26. Martín MA, Moral A, Martín LM, Alvarez JB (2007) The genetic resources of European sweet chestnut (Castanea sativa Miller) in Andalusia, Spain. Genet Resou Crop Evol 54:379–387CrossRefGoogle Scholar
  27. Martín MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martín LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeats SSR markers. Ann Appl Biol 154:389–398CrossRefGoogle Scholar
  28. Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic characterisation of traditional chestnut varieties in Italy using microsatellites (SSRs) markers. Ann Appl Biol 157:37–44CrossRefGoogle Scholar
  29. Martín MA, Mattioni C, Molina JR, Alvarez JB, Cherubini M, Herrera MA, Villani F, Martín LM (2012) Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes 8:127–136CrossRefGoogle Scholar
  30. Martín MA, Mattioni C, Cherubini M, Villani F, Martín LM (2016) A comparative study of European chestnut varieties in relation to adaptive markers. Agroforest Syst. doi:10.1007/s10457-016-9911-5 Google Scholar
  31. Mattioni C, Martín MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:1–11CrossRefGoogle Scholar
  32. Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation. Chapman and Hall, London, pp 15–39CrossRefGoogle Scholar
  33. Michon G (2005) Domesticating forests: how farmers manage forest resources. Institut de Richerche pour le Dèveloppement, Paris, France, the Centre for International Forestry Research, Borgor, Indonesia, and the World Agroforestry Centre, Nairobi, KenyaGoogle Scholar
  34. Muñoz C, Trujillo I, Martínez-Urdioz Barranco D, Rallo L, Marfil P, Gaut BS (2015) Olive domestication and diversification in the Mediterranean Basin. New Phytol 1:436–447Google Scholar
  35. Peakall R, Smouse PE (2005) GenAlEx 6: genetic analysis in excell. Population genetic software for teaching and research. Australian National University, Canberra Google Scholar
  36. Pereira-Lorenzo S, Costa R, Ramos-Cabrer A, Ribeiro C, da Silva M, Manzano G, Barreneche T (2010) Variation in grafted european chestnut and hybrids microsatellite reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 5:701–715CrossRefGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  38. Rohlf FJ, Fisher DL (1986) Test for hierarchical structure in random data sets. Syst Zool 17:407–412CrossRefGoogle Scholar
  39. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  40. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis, version 3.1. genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, SwitzerlandGoogle Scholar
  41. Schwatz MK, Luikart G, Waples R (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33CrossRefGoogle Scholar
  42. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  43. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  44. UPOV (1989) Guidelines for the conduct of test for distinctness, homogeneity and stability (Chestnut, Castanea sativa Mill.). TG/124/3, 23 ppGoogle Scholar
  45. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefPubMedGoogle Scholar
  46. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370PubMedGoogle Scholar
  47. Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería del Medio Agronómico y Forestal, Avda. Virgen del Puerto No. 2Centro Universitario de Plasencia, Universidad de ExtremaduraPlasenciaSpain
  2. 2.Departamento de Genética, E.T.S.I.A.M, Edificio Gregor Mendel, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario (ceiA3)Universidad de CórdobaCórdobaSpain

Personalised recommendations