Annals of Forest Science

, Volume 73, Issue 4, pp 885–894 | Cite as

From inventory to consumer biomass availability—the ITOC model

  • Udo Mantau
  • Thomas Gschwantner
  • Alessandro Paletto
  • Marian L. Mayr
  • Christian Blanke
  • Evgeniya Strukova
  • Admir Avdagic
  • Paolo Camin
  • Alain Thivolle-Cazat
  • Przemko Döring
  • Edmundas Petrauskas
  • Hermann Englert
  • Klemens Schadauer
  • Susana Barreiro
  • Adrian Lanz
  • Claude Vidal
Original Paper
Part of the following topical collections:
  1. Forest inventories at the European level

Abstract

Key messageThe application of the ITOC model allows the estimation of available biomass potentials from forests on the basis of National Forest Inventory data. The adaptation of the model to country-specific situations gives the possibility to further enhance the model calculations.

Context

With the rising demand for energy from renewable sources, up-to-date information about the available amount of biomass on a sustainable basis coming from forests became of interest to a wide group of stakeholders. The complexity of answering the question about amounts of biomass potentials from forests thereby increases from the regional to the European level.

Aims

The described ITOC model aims at providing a tool to develop a comparable data basis for the actual biomass potentials for consumption.

Methods

The ITOC model uses a harmonized net annual increment from the National Forest Inventories as a default value for the potential harvestable volume of timber. The model then calculates the total theoretical potential of biomass resources from forests. By accounting for harvesting restrictions and losses, the theoretical potential of biomass resources from forests is reduced and the actual biomass potentials for consumption estimated.

Results

The results from ITOC model calculations account for the difference between the amounts of wood measured in the forests and the actual biomass potentials which might be available for consumption under the model assumptions.

Conclusion

The gap between forest resource assessments and biomass potentials which are available for consumption can be addressed by using the ITOC model calculation results.

Keywords

Biomass potential Tree compartments Conversion factors Utilizable potential Degree of utilization Harvest losses Utilization restrictions Harmonization of inventory data 

References

  1. Backéus S, Wikström P, Lämås T (2005) A model for regional analysis of carbon sequestration and timber production. For Ecol Manag 216:28–40. doi:10.1016/j.foreco.2005.05.059 CrossRefGoogle Scholar
  2. Bundesministerium für Ernährung und Landwirtschaft (2014) Der Wald in Deutschland: Ausgewählte Ergebnisse der dritten BundeswaldinventurGoogle Scholar
  3. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11. doi:10.1007/s004420050201
  4. Cienciala E, Černý M, Apltauer J, Exnerovà Z (2005) Biomass functions applicable to European beech. J For Sci 51:147–154Google Scholar
  5. Cienciala E, Černý M, Tatarinov F, Apltauer J, Exnerová Z (2006) Biomass functions applicable to Scots pine. Trees 20:483–495. doi:10.1007/s00468-006-0064-4 CrossRefGoogle Scholar
  6. Cienciala E, Apltauer J, Exnerovà Z, Tatarinov F (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54:109–120Google Scholar
  7. Dieter M, Englert H (2001) Abschätzung des Rohholzpotentials für die energetische Nutzung in der Bundesrepublik Deutschland. Arbeitsbericht des Instituts für Ökonomie, 2001/11. Johann Heinrich von Thünen-Institut (vTI), Bundesforschungsinstitut für Ländliche Räume. Wald und Fischerei, BraunschweigGoogle Scholar
  8. Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/27/EC and 2003/30/ECGoogle Scholar
  9. Eid T, Fredrik Hoen H, Økseter P (2002) Timber production possibilities of the Norwegian forest area and measures for a sustainable forestry. For Policy and Econ 4:187–200. doi:10.1016/S1389-9341(01)00069-7 CrossRefGoogle Scholar
  10. Fattorini L, Gasparini P, Nocetti M, Tabacchi G (2004) Above-ground tree phytomass prediction and preliminary shrub phytomass assessment in forest stands of Trentino. Acta Biologica 81:75–121Google Scholar
  11. Forest Europe, UNECE and FAO (2011) State of Europes forests to State of Europe´s forests 2011: status & trends in sustainable forest management in Europe. Ministerial Conference on the Protection of Forests in Europe, OsloGoogle Scholar
  12. Garcia C, Vayreda J, Sabaté S, Ibàñez J (2004) Main components of the aboveground biomass expansion factors. Paper presented at COST Action E-21 WG 1 Meeting on BEFs, Hämeenlinna, FinlandGoogle Scholar
  13. Green C, Tobin B, O’Shea M, Farrell EP, Byrne KA (2007) Above- and belowground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.). Eur J Forest Res 126:179–188. doi:10.1007/s10342-005-0093-3 CrossRefGoogle Scholar
  14. Gschwantner T, Schadauer K, Vidal C, Lanz A, Tomppo E, Di Cosmo L, Robert N, Englert Duursma D, Lawrence M (2009) Common tree definitions for national forest inventories in Europe. Silva Fenn. 43: 303–321 doi: 10.14214/sf.463
  15. Hetsch S (2009) Potential sustainable wood supply in Europe. Geneva timber and forest discussion paper, vol 52. United Nations Economic Commission for Europe, Food and Agriculture Organization of the United Nations, GenevaGoogle Scholar
  16. Jochem D, Weimar H, Bösch M, Mantau U, Dieter M (2015) Estimation of wood removals and fellings in Germany: a calculation approach based on the amount of used roundwood. Eur J Forest Res 134:869–888. doi:10.1007/s10342-015-0896-9 CrossRefGoogle Scholar
  17. Kärkkäinen L, Matala J, Härkönen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943. doi:10.1016/j.biombioe.2008.01.008 CrossRefGoogle Scholar
  18. Koprivica (2010) Estimation of biomass in a submontane beech high forest in Serbia. University of West HungaryGoogle Scholar
  19. Malinen J, Pesonen M, Määttä T, Kajanus M (2001) Potential harvest for wood fuels (energy wood) from logging residues and first thinnings in Southern Finland. Biomass Bioenergy 20:189–196. doi:10.1016/S0961-9534(00)00075-1 CrossRefGoogle Scholar
  20. Mantau U (2012) Holzrohstoffbilanz Deutschland: Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung von 1987 bis 2015. Zentrum Holzwirtschaft, HamburgGoogle Scholar
  21. Nuutinen T, Kilpeläinen A, Hirvelä H, Härkönen K, Ikonen V, Lempinen R, Peltola H, Wilhelmsson L, Kellomäki S (2009) Future wood and fibre sources—case North Karelia in eastern Finland. Silva Fenn. 43: 489–505 doi: 10.14214/sf.202
  22. Päivinen R, Köhl M (2005) European Forest information and communication system (EFICS). EFI technical report, vol 17. European Forest Institute, Joensuu, FinlandGoogle Scholar
  23. Pajtík J, Konôpka B, Lukac M (2008) Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For Ecol Manage 256:1096–1103. doi:10.1016/j.foreco.2008.06.013 CrossRefGoogle Scholar
  24. Röser D, Sikanen L, Asikain en A, Parikka H, Väätäinen K (2011) Productivity and cost of mechanized energy wood harvesting in Northern Scotland. Biomass Bioenergy 35:4570–4580. doi:10.1016/j.biombioe.2011.06.028 CrossRefGoogle Scholar
  25. Schmitz F, Polley H, Schwitzgebel F (2005) Die zweite Bundeswaldinventur - BWI2: der InventurberichtGoogle Scholar
  26. Skovsgaard JP, Nord-Larsen T (2012) Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. Eur J Forest Res 131:1035–1053. doi:10.1007/s10342-011-0575-4 CrossRefGoogle Scholar
  27. Ståhl G, Cienciala E, Chirici G, Lanz A, Vidal C, Winter S, McRoberts RE, Rondeux J, Schadauer K, Tomppo E (2012) Bridging national and reference definitions for harmonizing Forest statistics. For Sci 58:214–223. doi:10.5849/forsci.10-067 Google Scholar
  28. Svoboda M, Matějka K, Kopáček J, Žaloudík J (2006) Estimation of tree biomass of Norway spruce forest in the Plešné Lake catchment, the Bohemian Forest. Biologia 61:523–532. doi:10.2478/s11756-007-0075-7 Google Scholar
  29. Tabacchi G, Di Cosmo L, Gasparini P (2011) Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J Forest Res 130:911–934. doi:10.1007/s10342-011-0481-9 CrossRefGoogle Scholar
  30. Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National Forest Inventories - Pathways for common reporting. Springer Netherlands, DordrechtGoogle Scholar
  31. Tomter SM, Gasparini P, Gschwantner T, Hennig P, Kulbokas G, Kuliešis A, Polley H, Robert N, Rondeux J, Tabacchi G, Tomppo E (2012) Establishing bridging functions for harmonizing growing stock estimates: examples from European National Forest Inventories. For Sci 58:224–235. doi:10.5849/forsci.10-068 Google Scholar
  32. UNECE and FAO (2000) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate). ECE/TIM/SP/17, no. 17. United Nations, New YorkGoogle Scholar
  33. UNECE and FAO (2011) The European forest sector outlook study II, 2010–2030. United Nations, GenevaGoogle Scholar
  34. Verkerk H, Lindner M, Anttila P, Asikainen A (2010) The realistic supply of biomass from forests. In: EUwood—final report., Hamburg, GermanyGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2016

Authors and Affiliations

  • Udo Mantau
    • 1
  • Thomas Gschwantner
    • 2
  • Alessandro Paletto
    • 3
  • Marian L. Mayr
    • 1
  • Christian Blanke
    • 1
  • Evgeniya Strukova
    • 4
  • Admir Avdagic
    • 5
  • Paolo Camin
    • 6
  • Alain Thivolle-Cazat
    • 7
  • Przemko Döring
    • 1
  • Edmundas Petrauskas
    • 8
  • Hermann Englert
    • 9
  • Klemens Schadauer
    • 2
  • Susana Barreiro
    • 10
  • Adrian Lanz
    • 11
  • Claude Vidal
    • 12
  1. 1.Centre of Wood ScienceUniversity of HamburgHamburgGermany
  2. 2.Federal Research and Training Centre for Forests, Natural Hazards and LandscapeWienAustria
  3. 3.CREA Council for Agricultural Research and EconomicsTrentoItaly
  4. 4.Moscow State Forest UniversityMytishchiRussia
  5. 5.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  6. 6.Timber Industry and Forest Management SectionFederal Office for the Environment FOENBernSwitzerland
  7. 7.FCBA Institut Technologique, Pôle Economie, Energie, ProspectiveParisFrance
  8. 8.Institute of Forest Management and Wood ScienceAleksandras Stulginskis UniversityAkademijaLithuania
  9. 9.International Forestry and Forest EconomicsThünen InstituteBraunschweigGermany
  10. 10.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal
  11. 11.Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  12. 12.DG Joint Research Centre, Unit Forest Resources and ClimateEuropean CommissionIspraItaly

Personalised recommendations