Annals of Forest Science

, Volume 72, Issue 6, pp 795–810 | Cite as

Improving the robustness of biomass functions: from empirical to functional approaches

  • Ablo Paul Igor Hounzandji
  • Mathieu Jonard
  • Claude Nys
  • Laurent Saint-André
  • Quentin Ponette
Original Paper

Abstract

Key message

We developed precise, consistent, generic, and robust biomass equations for seven aboveground tree components of sessile and pedunculate oaks. These equations can be used to accurately estimate carbon stocks and fluxes in and out of the forest.

Context

Large uncertainties still persist when using existing biomass equations for larger scale applications.

Aims

The objective of this study was to test two contrasting modeling approaches to obtain biomass estimates of various components (stem, stem wood, stem bark, crown, and three branch categories) for Quercus petraea and Quercus robur and to compare them in terms of predictive capacity, genericity, consistency, and robustness.

Methods

All models were calibrated on a total of 117 oak trees sampled over a wide range of sites and stands and further tested on an independent data set of 33 trees. The “empirical” approach consisted in declining a common allometric equation based on two variables (diameter at breast height and total height) into all its possible forms and selecting the final model on purely statistical performances; the “structural” method was based on the fitting of a priori dedicated model forms for each component to allow a clear interpretation of the model parameters.

Results

For the stem components, both approaches resulted in similar statistical performances despite difference in model forms and number of parameters. Although equally performant on the validation data set for the total crown, only the structural model gave satisfactory results when applied to the independent data set. Both approaches failed to accurately predict the branch fractions on the validation data set.

Conclusion

Using physically based model forms increased the robustness of the biomass equations.

Keywords

Quercus robur Quercus petraea Covariate models Allometric equations Seemingly unrelated regression Generic models 

References

  1. Analla M (1998) Model validation through the linear regression fit to actual versus predicted values. Agric Syst 57:115–119. doi:10.1016/S0308-521X(97)00073-5 CrossRefGoogle Scholar
  2. André F (2007) Influence of the heterogeneity of canopy structure on the spatio-temporal variability of atmospheric deposition within a mixed oak-beech stand. PhD thesis, Université catholique de LouvainGoogle Scholar
  3. André F, Ponette Q (2003) Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standards stand in Chimay (Belgium). Ann For Sci 60:489–502CrossRefGoogle Scholar
  4. André F, Jonard M, Ponette Q (2010) Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci Total Environ 408:2285–2294. doi:10.1016/j.scitotenv.2010.02.040 PubMedCrossRefGoogle Scholar
  5. António N, Tomé M, Tomé J, Soares P, Fontes L (2007) Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res 37:895–906. doi:10.1139/X06-276 CrossRefGoogle Scholar
  6. Arevalo C, Volk TA, Bevilacqua E, Abrahamson L (2007) Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy 31:1–12CrossRefGoogle Scholar
  7. Bartelink H (1996) Allometric relationships on biomass and needle area of Douglas-fir. For Ecol Manag 86:193–203CrossRefGoogle Scholar
  8. Bi H, Turner J, Lambert MJ (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 18:467–479. doi:10.1007/s00468-004-0333-z CrossRefGoogle Scholar
  9. Brandeis TJ, Delaney M, Parresol BR, Royer L (2006) Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. For Ecol Manag 233:133–142. doi:10.1016/j.foreco.2006.06.012 CrossRefGoogle Scholar
  10. Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132. doi:10.1016/S0378-1127(03)00229-9 CrossRefGoogle Scholar
  11. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. doi:10.1126/science.1155458 PubMedCrossRefGoogle Scholar
  12. Carroll RJ, Wu JCF, Ruppert D (1988) The effect of estimating weights in weighted least squares. J Am Stat Assoc 83:1045–1054. doi:10.2307/2290134 CrossRefGoogle Scholar
  13. Carvalho JP, Parresol BR (2003) Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag 179:269–276. doi:10.1016/s0378-1127(02)00549-2 CrossRefGoogle Scholar
  14. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond Ser B Biol Sci 359:409–420. doi:10.1098/rstb.2003.1425 CrossRefGoogle Scholar
  15. Cienciala E, Apltauer J, Exnerová Z, Tatarinov F (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54:109–120Google Scholar
  16. Dagnelie P (1975) Analyse statistique à plusieurs variables. Presses Agronomiques de Gembloux, GemblouxGoogle Scholar
  17. Dagnelie P, Palm R, Rondeux J (1999) Tables de cubage des arbres et des peuplements forestiers. Presses Agronomiques de Gembloux, GemblouxGoogle Scholar
  18. Dent JB, Blackie MJ (1979) Systems simulation in agriculture. Applied Science Publishers Ltd., LondonCrossRefGoogle Scholar
  19. Deret-Varcin E (1983) Etude comparative de la qualité du bois de trois types de chênes (rouvres, pédonculés et intermédiaires), en forêt de Morimond. Ann For Sci 40:373–398CrossRefGoogle Scholar
  20. Dhôte J-F, Hatsch E, Rittié D (2000) Forme de la tige, tarifs de cubage et ventilation de la production en volume chez le Chêne sessile. Ann For Sci 57:121–142CrossRefGoogle Scholar
  21. Duursma R, Marshall J, Robinson A, Pangle R (2007) Description and test of a simple process-based model of forest growth for mixed-species stands. Ecol Model 203:297–311. doi:10.1016/j.ecolmodel.2006.11.032 CrossRefGoogle Scholar
  22. FAO (2010) Global Forest Resources Assessment 2010—main report. FAO Forestry Paper No. 163. http://www.fao.org/docrep/013/i1757e/i1757e00.htm. Accessed 12 June 2013
  23. Fortin M, Ningre F, Robert N, Mothe F (2012) Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: a case study applied to even-aged oak stands in France. For Ecol Manag 279:176–188. doi:10.1016/j.foreco.2012.05.031 CrossRefGoogle Scholar
  24. Genet A, Wernsdörfer H, Jonard M, Pretzsch H, Rauch M, Ponette Q, Nys C, Legout A, Ranger J, Vallet P, Saint-André L (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. For Ecol Manag 261:1188–1202. doi:10.1016/j.foreco.2010.12.034 CrossRefGoogle Scholar
  25. Honer T (1964) The use of height and squared diameter ratios for the estimation of merchantable cubic foot volume. For Chron 40:324–331CrossRefGoogle Scholar
  26. Huet S, Bouvier A, Poursat M-A, Jolivet E (2004) Statistical tools for nonlinear regression: a pratical guide with S-PLUS and R examples. Springer, New YorkGoogle Scholar
  27. Husch B, Miller C, Beers T (1982) Forest mensuration. Wiley, New YorkGoogle Scholar
  28. IPCC (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies, HayamaGoogle Scholar
  29. Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209. doi:10.1016/s0378-1127(00)00460-6 CrossRefGoogle Scholar
  30. Lambert M, Ung C, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018. doi:10.1139/X05-112 CrossRefGoogle Scholar
  31. Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211–224. doi:10.1016/j.foreco.2003.07.008 CrossRefGoogle Scholar
  32. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73. doi:10.1016/0169-7722(91)90038-3 CrossRefGoogle Scholar
  33. Longuetaud F, Santenoise P, Mothe F, Senga Kiessé T, Rivoire M, Saint-André L, Ognouabi N, Deleuze C (2013) Modeling volume expansion factors for temperate tree species in France. For Ecol Manag 292:111–121. doi:10.1016/j.foreco.2012.12.023 CrossRefGoogle Scholar
  34. Mayer D, Butler D (1993) Statistical validation. Ecol Model 68:21–32CrossRefGoogle Scholar
  35. Mayer D, Stuart M, Swain A (1994) Regression of real-world data on model output: an appropriate overall test of validity. Agric Syst 45:93–104CrossRefGoogle Scholar
  36. McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL (2010) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol 45:789–795PubMedCrossRefGoogle Scholar
  37. Návar J, Nájera J, Jurado E (2002) Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. J Arid Environ 52:167–179. doi:10.1006/jare.2001.0819 CrossRefGoogle Scholar
  38. Nelson BW, Mesquita R, Pereira JL, Aquino G, de Souza S, Teixeira Batista G, Bovino Couto L (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag 117:149–167. doi:10.1016/s0378-1127(98)00475-7 CrossRefGoogle Scholar
  39. Nepveu G (1984) Contrôle héréditaire de la densité et de la rétractibilité du bois de trois espèces de Chêne (Quercus petraea, Quercus robur et Quercus rubra). Silvae Genet 33:110–115Google Scholar
  40. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593Google Scholar
  41. Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878. doi:10.1139/cjfr-31-5-865 CrossRefGoogle Scholar
  42. Parresol BR, Hotvedt JE, Cao QV (1987) A volume and taper prediction system for bald cypress. Can J For Res 17:250–259CrossRefGoogle Scholar
  43. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  44. Prisley SP, Mortimer MJ (2004) A synthesis of literature on evaluation of models for policy applications, with implications for forest carbon accounting. For Ecol Manag 198:89–103. doi:10.1016/j.foreco.2004.03.038 CrossRefGoogle Scholar
  45. Ranger J, Marques R, Colin-Belgrand M, Flammang N, Gelhaye D (1995) The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga menziesii Franco) stand studied using a chronosequence approach. For Ecol Manag 72:167–183. doi:10.1016/0378-1127(94)03469-d CrossRefGoogle Scholar
  46. Sabine CL, Heimann M, Artaxo P, Bakker DC, Chen C-TA, Field CB, Gruber N, Le Quéré C, Prinn RG, Richey J (2004) Current status and past trends of the global carbon cycle. Scope-Sci Commitee Probl Environ Int Counc Sci Unions 62:17–44Google Scholar
  47. Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205:199–214. doi:10.1016/j.foreco.2004.10.006 CrossRefGoogle Scholar
  48. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. Reidel, Dordrecht, HollandGoogle Scholar
  49. SAS Institute Inc (2011) SAS/ETS OnlineDoc® 9.3. SAS Institute Inc, Cary, NCGoogle Scholar
  50. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  51. Seifert T, Schuck J, Block J, Pretzsch H (2006) Simulation von Biomasse-und Nährstoffgehalt von Waldbäumen. Beiträge zur Jahrestagung vom 29:208–223Google Scholar
  52. Spurr SH (1952) Forest inventory. Ronald Press, New YorkGoogle Scholar
  53. Suchomel C, Pyttel P, Becker G, Bauhus J (2012) Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass Bioenergy 46:722–730. doi:10.1016/j.biombioe.2012.06.021 CrossRefGoogle Scholar
  54. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manag 97:1–24. doi:10.1016/s0378-1127(97)00019-4 CrossRefGoogle Scholar
  55. Thornton P, Hansen J (1996) A note on regressing real-world data on model output. Agric Syst 50:411–414CrossRefGoogle Scholar
  56. Vallet P, Dhôte J-F, Le Moguédec G, Ravart M, Pignard G (2006) Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manag 229:98–110CrossRefGoogle Scholar
  57. Vanclay JK, Skovsgaard JP (1997) Evaluating forest growth models. Ecol Model 98:1–12CrossRefGoogle Scholar
  58. Wutzler T, Wirth C, Schumacher J (2008) Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can J For Res 38:1661–1675. doi:10.1139/x07-194 CrossRefGoogle Scholar
  59. Zanetto A, Roussel G, Kremer A (1994) Geographic variation of inter-specific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. For Genet 1:111–123Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Ablo Paul Igor Hounzandji
    • 1
  • Mathieu Jonard
    • 1
  • Claude Nys
    • 2
  • Laurent Saint-André
    • 2
    • 3
  • Quentin Ponette
    • 1
  1. 1.Earth and Life Institute, Environmental SciencesUCLLouvain-la-NeuveBelgium
  2. 2.UR1138, Unité Biogéochimie des Ecosystèmes Forestiers (BEF), Centre INRA de NancyINRAChampenouxFrance
  3. 3.CIRAD, UMR ECO&SOLSMontpellierFrance

Personalised recommendations