Advertisement

Annals of Forest Science

, Volume 72, Issue 2, pp 183–193 | Cite as

Susceptibility of autochthonous German Fraxinus excelsior clones to Hymenoscyphus pseudoalbidus is genetically determined

  • Rasmus EnderleEmail author
  • Aikaterini Nakou
  • Kristina Thomas
  • Berthold Metzler
Original Paper

Abstract

Context

It might be possible to establish a new generation of Fraxinus excelsior which is insusceptible towards ash dieback (agent: Hymenoscyphus pseudoalbidus) by efficient breeding. However, a considerable number of highly tolerant individuals which have the ability to pass on this trait to their progeny are needed.

Aims

The aim of this study was to identify the potential of provenances from southwestern Germany as a source of future selection for resistance or resistance breeding.

Methods

In July 2012 and 2013, ash dieback severity was scored by assessing the crown defoliation and the portion of epicormic shoots in the crowns in clonal seed orchards with a total of 1,726 ash trees in southwestern Germany.

Results

Ash dieback severity differed strongly between the orchards and the clones. Broad-sense heritability ranged from 0.18 to 0.55 for crown defoliation and from 0.48 to 0.58 for the portion of epicormic shoots between the orchards. Clones from nearby populations did not show differences in general levels of susceptibility.

Conclusion

The study highlights that there is high genetic variation in susceptibility and considerable genetic potential for resistance breeding in provenances from southwestern Germany.

Keywords

Fraxinus excelsior Hymenoscyphus pseudoalbidus Ash dieback Clonal seed orchards Heritability Tree breeding 

Notes

Acknowledgments

Our thanks go to the Research Institute for Forest Ecology and Forestry of Rheinland-Pfalz for the kind support during the assessments and for providing their seed orchards. For their help during the surveys, we thank Johanna Bußkamp, Jonas Wehrle, Ricardo Rivero, Robert Krämer, Martina Stabel, Dietmar Weber and particularly Hermann Schott, who had good ideas for the development of the disease severity scoring system. We are grateful to Dr. Franziska Peters for revising the English and to anonymous reviewers for valuable suggestions improving the manuscript.

Funding

The study was funded by the Forest Research Institute of Baden-Wuerttemberg.

References

  1. Bakys R, Vasiliauskas A, Ihrmark K, Stenlid J, Menkis A, Vasaitis R (2011) Root rot, associated fungi and their impact on health condition of declining Fraxinus excelsior stands in Lithuania. Scand J For Res 26:128–135CrossRefGoogle Scholar
  2. Delb H, Bublitz T, John R, Metzler B, Schumacher J (2013a) Waldschutzsituation 2012/2013 in Baden-Württemberg. AFZ-Der Wald 68:8–11Google Scholar
  3. Delb H, Bublitz T, John R, Metzler B, Schumacher J (2013b) Waldschutzsituation 2012/2013 in Rheinland-Pfalz. AFZ-Der Wald 68:16–19Google Scholar
  4. Douglas GC, Pliūra A, Dufour J, Mertens P, Jacques D, Fernandez-Manjares J, Buiteveld J, Parnuta G, Tudoroiu M, Curnel Y, Thomasset M, Jensen V, Knudsen M, Foffova E, Chandelier A, Steenackers M (2013) Common ash (Fraxinus excelsior L.). In: Pâques LE (ed) Forest tree breeding in Europe: current state-of-the-art and perspectives, Springer, pp 403–462Google Scholar
  5. Enderle R, Peters F, Nakou K, Metzler B (2013) Temporal development of ash dieback symptoms and spatial distribution of collar rots in a provenance trial of Fraxinus excelsior. Eur J Forest Res 132:865–876. doi: 10.1007/s10342-013-0717-y CrossRefGoogle Scholar
  6. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21CrossRefPubMedGoogle Scholar
  7. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J Stat Softw 33:1–22Google Scholar
  8. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204PubMedCentralPubMedGoogle Scholar
  9. Husson C, Scala B, Cael O, Frey P, Feau N, Ioos R, Marcais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130:311–324CrossRefGoogle Scholar
  10. Husson C, Caël O, Grandjean JP, Nageleisen LM, Marçais B (2012) Occurrence of Hymenoscyphus pseudoalbidus on infected ash logs. Plant Pathol 61:889–895. doi: 10.1111/j.1365-3059.2011.02578.x CrossRefGoogle Scholar
  11. Kirisits T, Freinschlag C (2012) Ash dieback caused by Hymenoscyphus pseudoalbidus in a seed plantation of Fraxinus excelsior in Austria. J Agric Ext Rural Dev 4:184–191. doi: 10.5897/JAERD12.046 Google Scholar
  12. Kjær ED, Wellendorf H (1997) Variation in flowering and reproductive success in a Danish Picea abies (Karst.) seed orchard. Int J For Genet 4:181–188Google Scholar
  13. Kjær ED, McKinney LV, Nielsen LR, Hansen LN, Hansen JK (2012) Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol Appl 5:219–228. doi: 10.1111/j.1752-4571.2011.00222.x CrossRefPubMedCentralPubMedGoogle Scholar
  14. Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270. doi: 10.1111/j.1439-0329.2006.00453.x CrossRefGoogle Scholar
  15. Kowalski T, Holdenrieder O (2009) Pathogenicity of Chalara fraxinea. For Pathol 39:1–7. doi: 10.1111/j.1439-0329.2008.00565.x CrossRefGoogle Scholar
  16. Lenz H, Straßer L, Baumann M, Baier U (2012) Boniturschlüssel zur Einstufung der Vitalität von Alteschen. AFZ-Der Wald 67:18–19Google Scholar
  17. Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283CrossRefGoogle Scholar
  18. Lygis V, Vasiliauskas R, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20:337–346CrossRefGoogle Scholar
  19. McKinney LV, Nielsen LR, Hansen JK, Kjær ED (2011) Presence of natural genetic resistance in Fraxinus excelsior (Oleaceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity 106:788–797. doi: 10.1038/hdy.2010.119 CrossRefPubMedCentralPubMedGoogle Scholar
  20. McKinney LV, Thomsen IM, Kjær ED, Bengtsson SBK, Nielsen LR (2012) Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): a case of local cryptic extinction? Fungal Ecol 5:663–669CrossRefGoogle Scholar
  21. McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kjær ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long term solution. Plant Pathol. doi: 10.1111/ppa.12196 Google Scholar
  22. Metzler B, Enderle R, Karopka M, Töpfner K, Aldinger E (2012) Entwicklung des Eschentriebsterbens in einem Herkunftsversuch an verschiedenen Standorten in Süddeutschland. German J For Res (AFJZ) 183:168–180Google Scholar
  23. Metzler B, Baumann M, Baier U, Heydeck P, Bressem U, Lenz H (2013) Bundesweite Zusammenstellung: Handlungsempfehlungen beim Eschentriebsterben. AFZ-Der Wald 68:17–20Google Scholar
  24. Orlikowski LB, Ptaszek M, Rodziewicz A, Nechwatal J, Thinggaard K, Jung T (2011) Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. For Pathol 41:510–519CrossRefGoogle Scholar
  25. Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback—a conservation biology challenge. Biol Conserv 158:37–49CrossRefGoogle Scholar
  26. Pliūra A, Lygis V, Suchockas V, Bartkevičius E (2011) Performance of twenty four European Fraxinus excelsior populations in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Balt For 17:17–34Google Scholar
  27. Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J For 104:118–124Google Scholar
  28. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:333–342. doi: 10.1111/j.1439-0329.2010.00645.x CrossRefGoogle Scholar
  29. Roloff A, Pietzarka U (1997) Fraxinus excelsior Linné 1753. In: Schütt et al. (eds) Enzyklopädie der Holzgewächse, 7th edn, ecomed, Landsberg am Lech, pp 1–15Google Scholar
  30. Schröter H, Delb H, John R, Metzler B (2010a) Waldschutzsituation 2009/2010 in Baden-Württemberg. AFZ-Der Wald 65:8–11Google Scholar
  31. Schröter H, Delb H, Metzler B (2010b) Waldschutzsituation 2009/2010 in Rheinland-Pfalz. AFZ-Der Wald 65:16–17Google Scholar
  32. Skovsgaard JP, Thomsen IM, Skovgaard IM, Martinussen T (2010) Associations between symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). For Pathol 40:7–18CrossRefGoogle Scholar
  33. Stener LG (2013) Clonal differences in susceptibility to the dieback of Fraxinus excelsior. Scand J For Res 28:1–12. doi: 10.1080/02827581.2012.735699 CrossRefGoogle Scholar
  34. Straw NA, Williams DT, Kulinich O, Gninenko YI (2013) Distribution, impact and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) in the Moscow region of Russia. Forestry 86:515–522. doi: 10.1093/forestry/cpt031 CrossRefGoogle Scholar
  35. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266. doi: 10.1038/nrg2322 CrossRefPubMedGoogle Scholar
  36. Zhao YJ, Hosoya T, Baral HO, Hosaka K, Kakishima M (2012) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122:25–41CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Rasmus Enderle
    • 1
    Email author
  • Aikaterini Nakou
    • 1
  • Kristina Thomas
    • 2
  • Berthold Metzler
    • 1
  1. 1.Department of Forest ProtectionForest Research Institute of Baden-WuerttembergFreiburgGermany
  2. 2.Research Institute for Forest Ecology and ForestryTrippstadtGermany

Personalised recommendations