Skip to main content

Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation

Abstract

Context

Increased summer drought is considered as a threat to the regeneration of Pinus sylvestris in the Central Alps. To a certain degree, seedlings are able to mitigate negative effects of drought by altering root/shoot ratios. But, seedlings may also enhance access to water and nutrients by cooperation with ectomycorrhizal fungi.

Aims

We tested the importance of both mechanisms for drought resistance of P. sylvestris seedlings during early establishment and assessed whether differences occur between topsoil and deeper soil layers.

Methods

Biomass allocation and colonisation of fine roots by ectomycorrhizal fungi were assessed in seedlings grown for 6 months in a common garden under different precipitation scenarios: constant drought (March–September), summer drought (June–September), and wet conditions.

Results

Root/shoot ratios increased from 0.6 under wet conditions to 0.8 under drought conditions, irrespective of the onset of the drought (March vs. June). In both drought scenarios, seedlings had shorter roots in the topsoil, increased the number of root tips per root length in both soil layers, but did not alter the colonisation rate of root tips by ectomycorrhizal fungi.

Conclusion

We conclude that plasticity in root architecture is an important mechanism for drought resistance of P. sylvestris during early seedling establishment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Agerer R (1987–97) Colour atlas of ectomycorrhizae, 1st–11th edn. Einhorn Verlag: Schwäbisch Gmünd

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi:10.2136/vzj2006.0068

    Article  Google Scholar 

  • Beniston M (2012) Impacts of climatic change on water and associated economic activities in the Swiss Alps. J Hydrol 412–413:291–296. doi:10.1016/j.jhydrol.2010.06.046

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi:10.1007/s10021-005-0126-2

    Article  Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443. doi:10.1007/BF02182684

    Article  Google Scholar 

  • Büntgen U, Martínez-Peña F, Aldea J, Rigling A, Fischer EM, Camarero JJ, Hayes MJ, Fatton V, Egli S (2013) Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s. Glob Planet Chang 107:177–185. doi:10.1016/j.gloplacha.2013.05.013

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: Consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277. doi:10.1111/j.0022-0477.2004.00870.x

    Article  Google Scholar 

  • Courty PE, Buee M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. doi:10.1016/j.soilbio.2009.12.006

    Article  CAS  Google Scholar 

  • Cregg BM, Zhang JW (2001) Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For Ecol Manag 154:131–139. doi:10.1016/S0378-1127(00)00626-5

    Article  Google Scholar 

  • Cudlin P, Kieliszewska-Rojucka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Borja I, Konopka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst 141:406–425. doi:10.1080/11263500701626028

    Article  Google Scholar 

  • Davies FT, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, OlaldePortugal V, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    Article  Google Scholar 

  • Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manag 256:1151–1159. doi:10.1016/j.foreco.2008.06.016

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schafer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505. doi:10.1007/PL00008875

    Article  Google Scholar 

  • Helmisaari HS, Ostonen I, Lohmus K, Derome J, Lindroos AJ, Merila P, Nojd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456. doi:10.1093/treephys/tpn042

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of the working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Kennedy PG, Peay KG (2007) Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291:155–165. doi:10.1007/s11104-006-9183-3

    Article  CAS  Google Scholar 

  • Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472. doi:10.1016/j.funbio.2010.03.008

    Article  PubMed  Google Scholar 

  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228. doi:10.1007/s00442-011-1981-5

    Article  PubMed  Google Scholar 

  • Kipfer T, Wohlgemuth T, van der Heijden MGA, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PLoS One 7:e35275. doi:10.1371/journal.pone.0035275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehto T (1992) Effect of drought on Picea sitchensis seedlings inoculated with mycorrhizal fungi. Scand J For Res 7:177–182. doi:10.1080/02827589209382710

    Article  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90. doi:10.1007/s00572-010-0348-9

    Article  PubMed  Google Scholar 

  • Lenoir J, Gégout JC, Pierrat JC, Bontemps JD, Dhôte JF (2009) Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography 32:765–777. doi:10.1111/j.1600-0587.2009.05791.x

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Dupouey JL, Bert D, Svenning JC (2010) Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). J Veg Sci 21:949–964. doi:10.1111/j.1654-1103.2010.01201.x

    Article  Google Scholar 

  • Lloret F, Peñuelas J, Prieto P, Llorens L, Estiarte M (2009) Plant community changes induced by experimental climate change: Seedling and adult species composition. Perspect Plant Ecol Evol Syst 11:53–63. doi:10.1016/j.ppees.2008.09.001

    Article  Google Scholar 

  • Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J Ecol 97:311–325. doi:10.1111/j.1365-2745.2008.01466.x

    Article  Google Scholar 

  • Marx DH, Kenney DS (1982) Production of ectomycorrhizal fungus inoculum. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, pp 131–146

    Google Scholar 

  • Matías L, Jump AS (2014) Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J Exp Bot 65:299–310. doi:10.1093/jxb/ert376

    Article  PubMed Central  PubMed  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J For Res 129:625–633. doi:10.1007/s10342-010-0363-6

    Article  Google Scholar 

  • Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, Peñuelas J, Scherer-Lorenzen M, Gil W, Grodzki W, Ambrozy S, Bergh J, Hódar JA, Zamora R, Valladares F (2013) Disparity in elevational shifts of European trees in response to recent climate warming. Glob Chang Biol 19:2490–2499. doi:10.1111/gcb.12220

    Article  PubMed  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Guerrero C, Ghazoul J, Moser B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279. doi:10.1007/s00442-011-2191-x

    Article  PubMed  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  PubMed  Google Scholar 

  • Shi LB, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12:303–311. doi:10.1007/s00572-002-0197-2

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology 85:1072–1084. doi:10.1890/03-0224

    Article  Google Scholar 

  • Valdés M, Asbjornsen H, Gomez-Cardenas M, Juarez M, Vogt KA (2006) Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza 16:117–124. doi:10.1007/s00572-005-0022-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Eppenberger, A. Joss, R. Maire, E. Schnider, and U. Wasem for field assistance and lab work, and M. Metslaid for comments on the manuscript.

Funding

The study was supported by grants 3100A0-118002 and 316000–121323 of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Moser.

Additional information

Handling Editor: Erwin Dreyer

Contribution of the co-authors

The co-authors jointly developed the idea and designed the experiment. The field work was carried out by Sarah Richter and Tabea Kipfer, supported by Thomas Wohlgemuth and Barbara Moser. Tabea Kipfer carried out the laboratory work with support by S. Egli. Barbara Moser and Tabea Kipfer analysed the data and wrote the manuscript with editorial advice by the co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 85 kb)

ESM 2

(PDF 65 kb)

ESM 3

(PDF 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moser, B., Kipfer, T., Richter, S. et al. Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation. Annals of Forest Science 72, 303–309 (2015). https://doi.org/10.1007/s13595-014-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-014-0380-6

Keywords

  • Central Alps
  • Common garden experiment
  • Ectomycorrhizal diversity
  • Phenotypic plasticity
  • Root/shoot ratio
  • Summer drought