Annals of Forest Science

, Volume 71, Issue 7, pp 811–819 | Cite as

Adventitious sprouting of Pinus leiophylla in response to salt stress

  • Marcos Jimenez-Casas
  • Janusz J. Zwiazek
Original Paper



Although adventitious shoots are produced in many tree species in response to injury, little is known about the effects of salinity on sprouting.


The main objective was to examine the sprouting capacity of Pinus leiophylla seedlings in relation to injury and physiological changes induced by NaCl.


Seedlings were grown in controlled-environment growth rooms and treated with 0, 100, 150, and 200 mM NaCl. Numbers of adventitious shoots were recorded and growth and physiological parameters measured after 64 days of treatments and following a 30-day recovery period.


NaCl treatments triggered sprouting of adventitious shoots, mainly in the lower parts of the stems. However, fewer sprouts were induced by 200 mM NaCl compared with the lower concentration treatments. These changes were accompanied by needle necrosis, decreased chlorophyll concentrations, seedling dry mass, and stem diameter. Stomatal conductance, net photosynthesis, and root hydraulic conductance decreased with increasing NaCl concentrations and did not return to the control levels after 30 days of stress relief.


Pinus leiophylla has the regeneration potential when exposed to salinity. However, very high salt concentrations induce severe physiological impairments and, consequently, a decrease of this regeneration potential.


Adventitious shoots Gas exchange Root hydraulic conductance Salt stress 



We thank the Natural Sciences and Engineering Research Council of Canada and the Mexican Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Colegio de Postgraduados for the financial support of this study.


  1. Alix-García J, De Janvry A, Sadoulet E (2005) A Tale of two communities: explaining deforestation in Mexico. World Dev 33:219–235CrossRefGoogle Scholar
  2. Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853PubMedCrossRefGoogle Scholar
  3. Apostol GK, Zwiazek JJ (2003) Hypoxia affects root sodium and chloride concentrations and alter water conductance in salt-treated jack pine (Pinus banksiana) seedlings. Trees 17:251–257Google Scholar
  4. Apostol GK, Zwiazek JJ, MacKinon DM (2002) NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant Soil 240:321–329CrossRefGoogle Scholar
  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16CrossRefGoogle Scholar
  7. Barton AM (2005) Response of Arbutus arizonica (Arizona madrone) to fire in Southeastern Arizona. Southwest Nat 50:7–11CrossRefGoogle Scholar
  8. Bettenay E (1986) Salt affected soils in Australia. Reclam Reveget Res 5:167–179Google Scholar
  9. Bowes BG (1996) A color atlas of plant structure. Manson Publishing Ltd, LondonGoogle Scholar
  10. Calvo Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD (2008) Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees 22:825–834CrossRefGoogle Scholar
  11. Calvo-Polanco M, Jones MD, Zwiazek JJ (2009) Effects of pH on NaCl resistance of American elm (Ulmus americana) seedlings inoculated with Hebeloma crustuliniforme and Laccaria bicolor. Acta Physiol Plant 31:515–522CrossRefGoogle Scholar
  12. Chomba BM, Guy RD, Weger HG (1993) Carbohydrate reserve accumulation and depletion in Engelmann spruce (Picea engelmannii Parry): effects of cold storage and pre-storage CO2 enrichment. Tree Physiol 13:351–364PubMedCrossRefGoogle Scholar
  13. Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196CrossRefGoogle Scholar
  14. Cline MG (1991) Apical dominance. Bot Rev 57:318–358CrossRefGoogle Scholar
  15. Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140CrossRefGoogle Scholar
  16. Eguiluz-Piedra T (1978) Ensayo de integración de los conocimientos sobre el genero Pinus en México. Dissertation Universidad Chapingo, MéxicoGoogle Scholar
  17. Epstein E (1972) Mineral nutrition of plants: principle and perspectives. Wiley, New YorkGoogle Scholar
  18. Esau K (1977) Anatomy of seed plants. Wiley, New YorkGoogle Scholar
  19. Ezcurra E (1991) The basin of Mexico. In: Turner BL (ed) The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge, New York, pp 577–588Google Scholar
  20. Fostad O, Pedersen PA (2000) Container-grown tree seedling responses to sodium chloride applications in different substrates. Environ Pollut 109:203–210PubMedCrossRefGoogle Scholar
  21. Franklin JA, Zwiazek JJ (2004) Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiol Plant 120:482–490PubMedCrossRefGoogle Scholar
  22. Harrington CA (1984) Factors influencing sprouting of red alder. Can J For Res 14:357–361CrossRefGoogle Scholar
  23. Hasegawa PM, Bressan RA, Zhu J, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefGoogle Scholar
  24. Hiscox JD, Irsaelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334CrossRefGoogle Scholar
  25. Jasso-Mata J, Jiménez-Casas M (2001) Resistencia y control de una plaga en un huerto semillero sexual de Pinus leiophylla Schl. et Cham. In Resumenes: V Congreso Mexicano de Recursos Forestales. 7-9 Nov. Guadalajara, Jal. México 237 ppGoogle Scholar
  26. Jimenez-Casas M, Zwiazek JJ (2013) Effects of branch pruning and seedling size on total transpiration and tissue Na and Cl accumulation in Pinus leiophylla seedlings exposed to salinity. Forest Sci 59:407–415CrossRefGoogle Scholar
  27. Lanner RM (2002) Why do trees live so long? Ageing Res Rev 1:653–671PubMedCrossRefGoogle Scholar
  28. Loustau D, Crepeau S, Guye GM, Sartore M, Saur E (1995) Growth and water relations of three geographically separate origins of maritime pine (Pinus pinaster) under saline conditions. Tree Physiol 15:569–576PubMedCrossRefGoogle Scholar
  29. Masera O (1996) Desforestación y Degradación Forestal en México. Grupo Interdisciplinario de Tecnología Rural Apropiada GIRA AC. Michoacán, MéxicoGoogle Scholar
  30. Mooney JA, Hayes RI (1973) Carbohydrate storage cycles in two California Mediterranean-climate trees. Flora, Jena 162:295–304Google Scholar
  31. Moreira F, Catry F, Duarte I, Acácio V, Silva JS (2009) A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L) trees in Southern Portugal. Plant Ecol 201:77–85CrossRefGoogle Scholar
  32. Muhsin T, Zwiazek JJ (2002) Ectomycorrhizae increase water conductance and protect white spruce (Picea glauca) seedlings against salt stress. Plant Soil 238:217–225CrossRefGoogle Scholar
  33. Musálem MA and Martínez-García S (2003) Monografía de Pinus leiophylla Schl. et Cham. Proyecto de investigación manejo sustentable y conservación de la biodiversidad de los bosques de clima templado y frío de México. INIFAP. Chapingo, MéxicoGoogle Scholar
  34. Navarro A, Bañon S, Olmos E, Sánchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480CrossRefGoogle Scholar
  35. O’Hara KL, York RA, Heald RC (2008) Effect of pruning severity and timing of treatment on epicormic sprout development in giant sequoia. Forestry 81:103–110CrossRefGoogle Scholar
  36. Ortiz O M (1993) Distribución y extensión de los suelos afectados por sales en México y en el mundo. Publicaciones del departamento de suelos, UACh, Chapingo, MéxicoGoogle Scholar
  37. Perry JP (1991) The pines of Mexico and Central America. Timber, Portland OregonGoogle Scholar
  38. Quine CP (2004) Development of epicormic sprouts on Sitka spruce stems in response to windthrown gap formation. Forestry 3:225–233CrossRefGoogle Scholar
  39. Renault S (2005) Tamarack response to salinity: effects of sodium chloride on growth and ion, pigment, and soluble carbohydrate levels. Can J For Res 35:2806–2812CrossRefGoogle Scholar
  40. Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx.) seedlings. Plant Soil 233:261–268CrossRefGoogle Scholar
  41. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefGoogle Scholar
  42. Robinson MF, Anne-Alienor V, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393CrossRefGoogle Scholar
  43. Rodríguez-Franco C (2002) Pinus leiophylla Schtdl. & Cham. In: CAB international (ed) Pines of silvicultural importance. CABI publishing, Wallingford, pp pp 202–pp 205Google Scholar
  44. Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and fire management proposal. Int J Wildland Fire 12:23–37CrossRefGoogle Scholar
  45. SAS institute Inc. (2001) SAS/PC system for windows. Version 8.2. SAS Institute, Cary, NC, USAGoogle Scholar
  46. Segura G (2000) Mexico’s forest sector and policies: a general perspective. In: Constituting the commons: crafting sustainable commons in the New Millennium, the eighth conference of the international association for the study of common property, Bloomington, IN, pp 27Google Scholar
  47. Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94CrossRefGoogle Scholar
  48. Vest PA, Westoby M (2004) Sprouting ability across diverse disturbances and vegetation types worldwide. J Ecol 92:310–320CrossRefGoogle Scholar
  49. Wan X, Landhäusser SM, Lieffers VJ, Zwiazek JJ (2006) Signals controlling root suckering and adventitious shoot formation in aspen (Populus tremuloides). Tree Physiol 26:681–687PubMedCrossRefGoogle Scholar
  50. Wan XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For Ecol Manag 245:76–87CrossRefGoogle Scholar
  51. White JB (1981) The influence of seedling size and length of storage on longleaf pine survival. Tree Planter’s Notes 1:3–4Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  2. 2.Especialidad ForestalColegio de Postgraduadosde MéxicoMexico

Personalised recommendations