Annals of Forest Science

, Volume 71, Issue 2, pp 161–171 | Cite as

Assessing changes in species distribution from sequential large-scale forest inventories

  • Laura Hernández
  • Isabel Cañellas
  • Iciar Alberdi
  • Iván Torres
  • Fernando Montes
Original Paper

Abstract

Context

It is assumed that global change is already affecting the composition, structure and distribution of forest ecosystems; however, detailed evidences of altitudinal and latitudinal shifts are still scarce.

Aims

To develop a method based on National Forest Inventory (NFI) to assess spatio-temporal changes in species distributions.

Methods

We develop an approach based on universal kriging to compare species distribution models from the different NFI cycles and regardless of the differences in the sampling schemes used. Furthermore, a confidence interval approach is used to assess significant changes in species distribution. The approach is applied to some of the southernmost populations of Pinus sylvestris and Fagus sylvatica in the Western Pyrenees over the last 40 years.

Results

An increase of the presence of the two species in the region was observed. Scots pine distribution has shifted about 1.5 km northwards over recent decades, whereas the European beech has extended its distribution southwards by about 2 km. Furthermore, the optimum altitude for both species has risen by about 200 m. As a result, the zone in which the two species coexist has been enlarged.

Conclusions

This approach provides a useful tool to compare NFI data from different sampling schemes, quantifying and testing significant shifts in tree species distribution over recent decades across geographical gradients.

Keywords

National Forest Inventory Universal kriging Shifts Pinus sylvestris Fagus sylvatica Pyrenees 

Notes

Acknowledgments

The authors wish to thank all the staff that makes possible the development of the NFI but especially Roberto Vallejo, Head of the Spanish National Forest Inventory, and Dr. Aitor Gastón (E.T.I Forestales), for kindly providing access to the full Spanish NFI data sets. The authors thank Adam Collins for the careful English language revision.

Funding

This research was supported by the AEG-09-007 agreement from the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA) and the AGL2010-21153.00.01 project funded by the Spanish Ministry of Science and Innovation (MICINN). F. Montes held a Ramon y Cajal research grant, financed by the MICINN.

References

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111PubMedCentralCrossRefGoogle Scholar
  2. Alpert P, Krichak S, Shafir H, Haim D, Osentinsky I (2008) Climatic trends to extremes employing regional modelling and statistical interpretation over the E. Mediterranean Glob Planet Change 63:163–170CrossRefGoogle Scholar
  3. Bellehumeur C, Legendre P (1998) Multiscale sources of variation in ecological variables: modelling spatial dispersion, elaborating sampling designs. Landscape Ecol 13:15–25CrossRefGoogle Scholar
  4. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  5. Costa M, Morla C, Sainz H (eds) (1997) Los bosques ibéricos. Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  6. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  7. Deutsch CV, Journel AG (1992) GSLIB geostatistical software library and user’s guide. Oxford University Press, London, p 340Google Scholar
  8. Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341CrossRefGoogle Scholar
  9. FAO (Food and Agriculture Organization of the United Nations) (2000) Global forest resources assessment. FAO Forestry Paper 140. RomeGoogle Scholar
  10. Gellrich M, Zimmermann NE (2007) Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: a spatial statistical modelling approach. Landscape Urban Plan 79:65–76CrossRefGoogle Scholar
  11. Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67:701CrossRefGoogle Scholar
  12. Goovaerts P (1994) Comparison of CoIK, IK and mIK performances for modeling conditional probabilities of categorical variables. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer, Dordrecht, pp 18–29CrossRefGoogle Scholar
  13. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  14. Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  15. Jump AS, Mátyás CA, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Tree 24:694–701PubMedGoogle Scholar
  16. Katz RW (1992) Role of statistics in the validation of general circulation models. Clim Res 2:35–45CrossRefGoogle Scholar
  17. Kräuchi N, Kienast F (1993) Modelling subalpine forest dynamics as influenced by a changing environment. Water Air Soil Pollut 68:185–197CrossRefGoogle Scholar
  18. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  19. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, And Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Cons Biol 17:1591–1600CrossRefGoogle Scholar
  20. Mandallaz D (2000) Estimation of the spatial covariance in universal kriging: application to forest inventory. Environ Ecol Stat 7:263–284CrossRefGoogle Scholar
  21. Matheron G (1969) Le krigeage Universel. Cahiers du Centre de Morphologie Mathematique, 1. Fontainebleau, FranceGoogle Scholar
  22. Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Model 202:225–242CrossRefGoogle Scholar
  23. Miller J, Hanham RQ (2011) Spatial nonstationarity and the scale of species-environment relationships in the Mojave Desert, California, USA. Int J Geogr Inf Sci 25:423–438CrossRefGoogle Scholar
  24. Montes F, Hernández MJ, Cañellas I (2005) A geostatistical approach to cork production sampling estimation in Quercus suber L. forests. Can J For Res 35:2787–2796CrossRefGoogle Scholar
  25. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861CrossRefGoogle Scholar
  26. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica.Google Scholar
  27. Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches to modeling the distributions of wildlife. Divers Distrib 13:313–323CrossRefGoogle Scholar
  28. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140CrossRefGoogle Scholar
  29. Poljanec A, Ficko A, Boncina A (2010) Spatio-temporal dynamic of European beech (Fagus sylvatica L.) in Slovenia, 1970–2005. For Ecol Manage 259:2183–2190CrossRefGoogle Scholar
  30. Rodríguez AE, Obeso JR (2000) Diet of the Cantabrian capercaillie: geographic variation and energetic content. Ardeola 47:77–83Google Scholar
  31. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeog 31:1555–1568CrossRefGoogle Scholar
  32. Thuiller W, Vayreda J, Pino J, Sabate S, Lavorel S, Gracia C (2003) Large-scale environmental correlates of forest tree distribution in Catalonia (NE Spain). Global Ecol Biogeogr 12:313–325CrossRefGoogle Scholar
  33. Tolosana-Delgado R, Pawlowsky-Glahn V, Egozcue JJ (2008) Indicator kriging without order relation violations. Math Geosci 40:327–347CrossRefGoogle Scholar
  34. Vilá-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172PubMedCrossRefGoogle Scholar
  35. Williams MS (2001) New approach to areal sampling in ecological surveys. For Ecol Manage 154:11–22CrossRefGoogle Scholar
  36. Yoo EH, Trgovac AB (2011) Scale effects in uncertainty modeling of presettlement vegetation distribution. Int J Geogr Inf Sci 25:405–421CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Laura Hernández
    • 1
    • 2
  • Isabel Cañellas
    • 1
    • 3
  • Iciar Alberdi
    • 1
  • Iván Torres
    • 4
  • Fernando Montes
    • 1
  1. 1.INIA-CIFORMadridSpain
  2. 2.E.T.S.I. MontesPolytechnic University of MadridMadridSpain
  3. 3.Sustainable Forest Management Research InstituteUniversity of Valladolid-INIAPalenciaSpain
  4. 4.UCLM, University of Castilla-La ManchaToledoSpain

Personalised recommendations