Annals of Forest Science

, Volume 71, Issue 2, pp 211–225 | Cite as

Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide

  • Christopher ReyerEmail author
  • Petra Lasch-Born
  • Felicitas Suckow
  • Martin Gutsch
  • Aline Murawski
  • Tobias Pilz
Original Paper



Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.


The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.


We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.


This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.


Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.


4C (FORESEE) CO2 effects Environmental change Level-II plots Process-based modelling Uncertainties 



This paper is dedicated to Matthias Dobbertin. We are grateful to ICP Forests and in particular Richard Fischer, Matthias Dobbertin, and Oliver Granke for helping us in all aspects concerning the Level-II database. This study was based on data that are part of the UNECE ICP Forests Collaborative Database (see In particular, data from the following countries and institutions were used: Austria (Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Wien. Mr. Ferdinand Kristöfel (; Belgium (Research Institute for Nature and Forest, Ministère de la Région Wallonne and Mathieu Jonard in particular); Czech Republic (Forestry and Game Management Research Institute, VULHM); Estonia (Estonian Environment Information Centre); Finland (Finnish Forest Research Institute, METLA); France (Ministère de l‘agriculture et de la pêche); Germany (Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Bayerische Landesanstalt für Wald und Forstwirtschaft, Landesforstanstalt Eberswalde, Nordwestdeutsche Forstliche Versuchsanstalt, Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Schwerin, Landesamt für Natur, Umwelt und Verbraucherschutz NRW, Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Ministerium für Umwelt, Energie und Verkehr, Landesamt für Umwelt- und Arbeitsschutz Saarbrücken, Staatsbetrieb Sachsenforst, Thüringer Landesanstalt für Wald, Jagd u. Fischerei); Hungary (State Forest Service); Italy (Corpo Forestale dello Stato-Servizio CONECOFOR); Lithuania (State Forest Survey Service); The Netherlands (Ministry of Agriculture, Nature and Food Quality); Norway (Norwegian Forest and Landscape Institute); Poland (Forest Research Institute); Romania (Forest Research and Management Institute, ICAS); Slovak Republic (National Forest Centre); Spain (Forest Health Unit (SPCAN)/DG Nature and Forest Policy (DGMNyPF)/ Ministerio de Medio Ambiente, y Medio Rural y Marino); Sweden (Swedish Forest Agency); Switzerland (Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, WSL). Data collection and evaluations were co-financed under the LIFE + Regulation (EC) 614/2007 of the European Parliament and of the Council. We also would like to thank Beate Klöcking providing us data for the validation. We greatly acknowledge the provision of the CRUPIK dataset by Peter Werner and Herman Österle, the NORDFLUX data by Pasi Kolari and the many people contributing to the Euroflux/CarboEurope database, in particular D. Papale, R. Valentini, A. Granier, I. Janssens, B. Gielen and R. Ceulemans. Furthermore, Niklaus Zimmermann, Pedro Contro, Michael Benken, Julia Marusczyk and Alexandra Wilke greatly supported the data preparation for the 4C application. We thank Marc Metzger and Marcus Lindner for providing us the environmental zones of Europe data. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract No. 505539) whose support is gratefully acknowledged. We are grateful to the IT-services of the Potsdam Institute for Climate Impact Research for providing excellent computational infrastructure to carry out this study.


All authors acknowledge funding from the EC FP7 MOTIVE project (grant agreement No. 226544).

Supplementary material

13595_2013_306_MOESM1_ESM.doc (12.9 mb)
ESM 1 (DOC 13197 kb)


  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371PubMedCrossRefGoogle Scholar
  2. Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer H, Palmer S, Reif A, Rehfuess K, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Allg Forst- und Jagdztg 176:60–67Google Scholar
  3. Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas M-J, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17:3274–3292. doi: 10.1111/j.1365-2486.2011.02476.x CrossRefGoogle Scholar
  4. BGR (2004) Nutzungsdifferenzierte Bodenübersichtskarte der Bundesrepublik Deutschland 1:100.000.000 (Wald-BÜK 1000). Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  5. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity— evidence since the middle of the 20th century. Glob Chang Biol 12:862–882CrossRefGoogle Scholar
  6. Bontemps JD, Hervé JC, Duplat P, Dhôte JF (2012) Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos 121:1287–1299CrossRefGoogle Scholar
  7. Bugmann H, Bigler C (2011) Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia 165:533–544. doi: 10.1007/s00442-010-1837-4 PubMedCrossRefGoogle Scholar
  8. Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabate S (eds) Impacts of Global Change of Tree Physiology and Forest Ecosystem. Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen. Forestry Science. Kluwer Academic Publisher, Dordrecht, pp 255–261Google Scholar
  9. Bugmann H, Palahi M, Bontemps JD, Tomé M (2010) Trends in modeling to address forest management and environmental challenges in Europe. For. Sys. 19(SI):3–7Google Scholar
  10. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157CrossRefGoogle Scholar
  11. Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, Brad St.Clair J (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manage 261:1121–1142CrossRefGoogle Scholar
  12. Churkina G, Trusilova K, Vetter M, Dentener F (2007) Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance Manag 2:5PubMedCentralPubMedCrossRefGoogle Scholar
  13. Déqué M, Rowell D, Lüthi D, Giorgi F, Christensen J, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70CrossRefGoogle Scholar
  14. de Vries W, Gert Jan R, Per G, Hubert S (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Change Biol 12:1151–1173CrossRefGoogle Scholar
  15. de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For Ecol Manag 174:77–95CrossRefGoogle Scholar
  16. Deutsch C, Journel A (1992) GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New YorkGoogle Scholar
  17. Di Filippo A, Biondi F, Maugeri M, Schirone B, Piovesan G (2012) Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Glob Chang Biol 18:960–972. doi: 10.1111/j.1365-2486.2011.02617.x CrossRefGoogle Scholar
  18. Eggers J, Lindner M, Zudin S, Zaehle S, Lisk J (2008) Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Glob Chang Biol 14:2288–2303. doi: 10.1111/j.1365-2486.2008.01653.x CrossRefGoogle Scholar
  19. ESBN, EC (2004) European Soil Database (v 2.0). European Soil Bureau Network and the European Commission, EUR 19945 EN, March 2004Google Scholar
  20. Fontes L, Bontemps JD, Bugmann H, van Oijen M, Gracia CA, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models supporting forest management in a changing environment. For. Sys. 19(SI):8–29Google Scholar
  21. Fuchs T (2008) GPCC Annual report for year 2008. Development of the GPCC data base and analysis products. GPCC, Offenbach, GermanyGoogle Scholar
  22. Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosyst 13:978–991. doi: 10.1007/s10021-010-9368-8 CrossRefGoogle Scholar
  23. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees - Struct. and. Funct 21:1–11Google Scholar
  24. Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561CrossRefGoogle Scholar
  25. Hollweg H-D, Böhm B, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble Simulations over Europe with the Regional Climate Model CLM forced with IPCC AR4 Global Scenarios. Max-Planck-Institute for Meteorology, Hamburg, GermanyGoogle Scholar
  26. Huang J, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283CrossRefGoogle Scholar
  27. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480PubMedCrossRefGoogle Scholar
  28. Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174CrossRefGoogle Scholar
  29. Kahle H-P, Karjalainen T, Schuck A, Agren GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess K-E, Spiecker H (eds) (2008) Causes and consequences of forest growth trends in Europe. Brill, LeidenGoogle Scholar
  30. Kauppi PE, Mielikainen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Sci 256:70–74CrossRefGoogle Scholar
  31. Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Chang Biol 17:565–579. doi: 10.1111/j.1365-2486.2010.02254.x CrossRefGoogle Scholar
  32. Kellomäki S, Leinonen SE (2005) Management of European Forests under Changing Climatic Conditions. Final Report of the Project “Silvicultural Response Strategies to Climatic Change in Management of European Forests” funded by the European Union under the Contract EVK2-2000-00723 (SilviStrat). Research Notes. University of Joensuu, Faculty of Forestry, JoensuuGoogle Scholar
  33. Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363CrossRefGoogle Scholar
  34. Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarch 80:42–54Google Scholar
  35. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411PubMedCrossRefGoogle Scholar
  36. Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Sci 309:1360–1362. doi: 10.1126/science.1113977 CrossRefGoogle Scholar
  37. Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397CrossRefGoogle Scholar
  38. Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manage 207:59–74CrossRefGoogle Scholar
  39. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009a) Climate Simulation with CLM, Climate of the 20th Century run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_C20_1_D3
  40. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009b) Climate Simulation with CLM, Climate of the 20th Century run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_C20_2_D3
  41. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009c) Climate Simulation with CLM, Scenario A1B run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_A1B_1_D3
  42. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009d) Climate Simulation with CLM, Scenario A1B run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_A1B_2_D3
  43. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009e) Climate simulation with CLM, Scenario B1 run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_B1_1_D3
  44. Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009f) Climate Simulation with CLM, Scenario B1 run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi: 10.1594/WDCC/CLM_B1_2_D3
  45. Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol 30:1209–1220. doi: 10.1093/treephys/tpq040 PubMedCrossRefGoogle Scholar
  46. Medlyn BE, Duursma RA, Zeppel MJB (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Chang 2:332–355CrossRefGoogle Scholar
  47. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563. doi: 10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  48. Milne R, Van Oijen M (2005) A comparison of two modelling studies of environmental effects on forest carbon stocks across Europe. Ann of For Sci 62:911–923. doi: 10.1051/forest:2005082 CrossRefGoogle Scholar
  49. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  50. Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nat 497:13–14CrossRefGoogle Scholar
  51. Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Chang Biol 13:108–122. doi: 10.1111/j.1365-2486.2006.01289.x CrossRefGoogle Scholar
  52. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nat 463:747–756CrossRefGoogle Scholar
  53. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani R (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nat 386:698–702CrossRefGoogle Scholar
  54. Nakicenovic N, Alcamo J, Davis G, Bd V, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung T, Kram T, Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Sv R, Victor N, Dadi Z (2000) IPCC special report emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  55. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Sci 300:1560–1563. doi: 10.1126/science.1082750 CrossRefGoogle Scholar
  56. New M, Hulme M, Jones P (2000) Representing Twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J of Clim 13:2217–2238. doi: 10.1175/1520-0442(2000)0132217:RTCSTC>2.0.CO;2 CrossRefGoogle Scholar
  57. New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J of Clim 12:829–856CrossRefGoogle Scholar
  58. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373. doi: 10.1073/pnas.1006463107 PubMedCrossRefGoogle Scholar
  59. Österle H, Gerstengarbe F-W, Werner PC (2003) Homogenisierung und Aktualisierung des Klimadatensatzes der Climate Research Unit der University of East Anglia, Norwich. Terra Nostra 6:326–329Google Scholar
  60. Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608CrossRefGoogle Scholar
  61. Pinkard EA, Battaglia M, Bruce J, Leriche A, Kriticos DJ (2010) Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. For Ecol Manag 259:839–847CrossRefGoogle Scholar
  62. Piovesan G, Biondi F, Filippo AD, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Chang Biol 14:1265–1281CrossRefGoogle Scholar
  63. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437CrossRefGoogle Scholar
  64. Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9. doi: 10.1007/s00704-004-0058-3 CrossRefGoogle Scholar
  65. Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597. doi: 10.1111/j.1461-0248.2008.01172.x PubMedCrossRefGoogle Scholar
  66. Reyer C, Lasch P, Mohren GMJ, Sterck FJ (2010) Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann of For Sci 67:805CrossRefGoogle Scholar
  67. Reyer C, Gutsch M, Lasch P (2012) Simulated forest productivity and biomass changes under global change in Europe. In: Pötzelsberger E, Mäkelä A, Mohren GMJ, Palahí M, Tomé M, Hasenauer H (eds) Modelling Forest Ecosystems - Concepts, Data and Application. Proceedings of the COST FP0603 Spring School, held in Kaprun, Austria, May 9th-13th, 2011. Institute of Silviculture, BOKU, Vienna. ISBN: 978-3-900962-98-2, pp 151–158Google Scholar
  68. Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) GPCC Status Report,Global Precipitation Climatology Centre. Offenbach, GermanyGoogle Scholar
  69. Rudolf B, Scheider U (2005) Calculation of gridded precipitation data fort he global land-surface using in-situ gauge observations. Proc. 2nd Workshop Int. Prec. Work. Gp.Google Scholar
  70. Scheider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, Offenbach, GermanyGoogle Scholar
  71. Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganicová K, Netherer S, Arpaci A, Bontemps J-D, Bugmann H, González-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas M-J, Mohren F (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222:903–924CrossRefGoogle Scholar
  72. Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag 258:1735–1750CrossRefGoogle Scholar
  73. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. Springer, BerlinGoogle Scholar
  74. Tans P, Keeling R (2012) Trends in Atmospheric Carbon Dioxide. NOAA/ESRL ( and Scripps Institution of Oceanography (,
  75. USGS (2004) Shuttle Radar Topography Mission, 30 Arc Second scenes (SRTM_GTOPO_u30_n040e020, SRTM_GTOPO_u30_n090e020, SRTM_GTOPO_u30_n090e060, SRTM_GTOPO_u30_n040w020, SRTM_GTOPO_u30_n090w020, SRTM_GTOPO_u30_n040w060, SRTM_GTOPO_u30_n090w060), Unfilled, Unfinished 2.0, Global Land Cover Facility, University of Maryland, Maryland, USAGoogle Scholar
  76. van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UKGoogle Scholar
  77. Vayreda J, Martinez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041CrossRefGoogle Scholar
  78. Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, de Vries W (2009) Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. For Ecol Manag 258:1794–1805CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Christopher Reyer
    • 1
    • 2
    Email author
  • Petra Lasch-Born
    • 1
  • Felicitas Suckow
    • 1
  • Martin Gutsch
    • 1
  • Aline Murawski
    • 1
  • Tobias Pilz
    • 1
  1. 1.Potsdam Institute for Climate Impact Research, RD II: Climate Impacts and VulnerabilitiesPotsdamGermany
  2. 2.Department of GeographyHumboldt University BerlinBerlinGermany

Personalised recommendations