Abstract
Context
The quantification of biomass of woody plants is at the basis of calculations of forest biomass and carbon stocks. Although there are well-developed allometric models for trees, they do not apply well to shrubs, and shrub-specific allometric models are scarce. There is therefore a need for a standardized methodology to quantify biomass and carbon stocks in open forests and woodlands.
Aims
To develop species-specific biomass estimation models for common shrubs, as well as a multispecies shrub model, for the subtropical semiarid Chaco forest of central Argentina.
Methods
Eight shrub species (Acacia aroma, Acacia gilliesii, Aloysia gratissima, Capparis atamisquea, Celtis ehrenbergiana, Larrea divaricata, Mimozyganthus carinatus, and Moya spinosa) were selected, and, on average, 30 individuals per species were harvested. Their total individual dry biomass was related with morphometric variables using regression analysis.
Results
Crown area as well as crown-shaped variables proved to be the variables with the best performance for both species-specific and multispecies shrub models. These allometric variables are thus recommended for standardized shrub biomass assessments.
Conclusion
By accounting for the shrub component of the vegetation, our models provide a way to improve the quantification of biomass and carbon in semiarid open forest and woodlands.



References
Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53. doi:10.1139/x72-009
Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, vol 134. FAO Forestry Paper. A forest resource assessment publication. FAO, Rome
Burnham KP, Anderson DR (2002) Model selection and inference. A practical information-theoretic approach, 2nd edn. Springer, Berlin–Heidelberg–New York
Cabido M, Acosta A, Carranza ML, Diaz S (1992) La vegetación del Chaco Árido en el W de la provincia de Córdoba, Argentina. Doc Phytosociol XIV:447–456
Capitanelli R (1979) Clima. In: Vázquez J, Miatello R, Roque M (eds) Geografía física de la provincia de Córdoba. Ed. Boldt, Buenos Aires, pp 45–138
Castro H, Freitas H (2009) Above-ground biomass and productivity in the Montado: from herbaceous to shrub dominated communities. J Arid Environ 73:506–511. doi:10.1016/j.jaridenv.2008.12.009
Chapin FS III, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x
Chojnacky DC, Milton M (2008) Measuring carbon in shrubs. In: Hoover CM (ed) Field measurements for forest carbon monitoring. Springer, New York, pp 45–72
Conti G, Díaz S (2013) Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28. doi:10.1111/1365-2745.12012
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat. Statistical software. Grupo Infostat FCA UNC, Córdoba
Gaillard de Benitez C, Pece M, Juárez de Galíndez M, Vélez S, Gómez A, Zárate M (2002) Determinación de funciones para la estimación de biomasa aérea individual de jarilla (Larrea divaricata) de la provincia de Santiago del Estero, Argentina. For Ver 4:23–28
Gorgas J, Tassile J (2003) Recursos naturales de la provincia de Córdoba. Los suelos. Agencia Córdoba Ambiente S.E. - INTA EEA Manfredi, Córdoba
GTOS (2010) A framework for terrestrial climate-related observations and development of standards for the terrestrial essential climate variables: proposed workplan. FAO, ICSU, UNEP, UNESCO, WMO. http://www.fao.org/gtos/doc/pub78.pdf. Accessed 13 Nov 2012
Hierro JL, Branch LC, Villarreal D, Clark KL (2000) Predictive equations for biomass and fuel characteristics of Argentine shrubs. J Range Manage 53:617–621. doi:10.2307/4003156
Hofstad O (2005) Review of biomass and volume functions for individual trees and shrubs in southeast Africa. J Trop For Sci 17:151–162
Iglesias MR, Barchuk AH (2010) Estimación de la biomasa aérea de seis leguminosas leñosas del Chaco Árido (Argentina). Ecol Austral 20:71–79
Iglesias MR, Barchuk A, Grilli MP (2012) Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient. For Ecol Manage 265:218–229. doi:10.1016/j.foreco.2011.10.036
Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49:12–35
Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2004) Comprehensive database of diameter-based biomass regressions for North American tree species. US Department of Agriculture, Forest Service, Northeastern Research Station, Delaware
Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi:10.1016/j.tree.2003.10.013
Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209. doi:10.1016/s0378-1127(00)00460-6
Logan M (2010) Biostatistical design and analysis using R. A practical guide. Wiley-Blackwell, UK
Ludwig JA, Reynolds JF, Whitson PD (1975) Size-biomass relationships of several Chihuahuan desert shrubs. Am Midl Nat 94:451–461. doi:10.2307/2424437
Lufafa A, Diédhiou I, Ndiaye NAS, Séné M, Kizito F, Dick RP, Noller JS (2009) Allometric relationships and peak-season community biomass stocks of native shrubs in Senegal’s Peanut Basin. J Arid Environ 73:260–266. doi:10.1016/j.jaridenv.2008.09.020
Morello JH, Sancholuz LA, Blanco CA (1977) Estudio macroecológico de los Llanos de la Rioja. IDIA 34:242–248
Murray RB, Jacobson MQ (1982) An evaluation of dimension analysis for predicting shrub biomass. J Range Manage 35:451–454. doi:10.2307/3898603
Nelson BW, Mesquita R, Pereira JLG, Aquino G, de Souza S, Teixeira Batista G, Bovino Couto L (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167. doi:10.1016/s0378-1127(98)00475-7
Northup BK, Zitzer SF, Archer S, McMurtry CR, Boutton TW (2005) Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. J Arid Environ 62:23–43. doi:10.1016/j.jaridenv.2004.09.019
Oñatibia GR, Aguiar MR, Cipriotti PA, Troiano F (2010) Individual plant and population biomass of dominant shrubs in Patagonian grazed fields. Ecol Austral 20:269–279
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609
Paton D, Nuñez J, Bao D, Muñoz A (2002) Forage biomass of 22 shrub species from Monfragüe Natural Park (SW Spain) assessed by log–log regression models. J Arid Environ 52:223–231. doi:10.1006/jare.2001.0993
Pérez Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos A, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, Ter Steege H, Van Der Heijden MGA, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver MC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. doi:10.1071/BT12225
Phua M-H, Saito H (2003) Estimation of biomass of a mountainous tropical forest using Landsat TM data. Can J Remote Sens 29:429–440. doi:10.5589/m03-005
Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manage 237:583–593. doi:10.1016/j.foreco.2006.10.004
Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. For Ecol Manage 203:319–329. doi:10.1016/j.foreco.2004.07.059
Sampaio EVSB, Silva GC (2005) Biomass equations for Brazilian semiarid caatinga plants. Acta Bot Bras 19:935–943
Smith WB, Brand GJ (1983) Allometric biomass equations for 98 species of herbs, shrubs and small trees. US Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul
Tietema T (1993) Possibilities for the management of indigenous woodlands in Southern Africa: a case study from Botswana. In: Pierce GD, Gumbo DJ (eds) The Ecology and management of indigenous forest in Southern Africa. Zimbabwe Forest Commission & SAREC, Harare, pp 134–142
Vilà M (1993) The use of dimensional analysis to estimate plant resprout biomass. Sci Gerundensis Univ Gerona 19:47–51
Vora RS (1988) Predicting biomass of five shrub species in northeastern California. J Range Manage 41:63–65. doi:10.2307/3898792
Whittaker RH, Woodwell GM (1968) Dimension and production relations of trees and shrubs in the Brookhaven forest, New York. J Ecol 56:1–25. doi:10.2307/2258063
Zeng H-Q, Liu Q-J, Feng Z-W, Ma Z-Q (2010) Biomass equations for four shrub species in subtropical China. J For Res 15:83–90. doi:10.1007/s10310-009-0150-8
Zuloaga FO, Morrone O (1996) Catálogo de las Plantas Vasculares de la República Argentina I, vol 60. Monographs in systematic botany. Missouri Botanical Garden, Missouri
Zuloaga FO, Morrone O (1999) Catálogo de las Plantas Vasculares de la República Argentina II, vol 74. Monographs in systematic botany. Missouri Botanical Garden, Missouri
Acknowledgments
We are grateful to C. Rodriguez, G. Bertone, P. Jaureguiberry, and M. Bonino for their valuable field assistance during the development of this work.
Funding
This study was funded by FONCyT, CONICET, Universidad Nacional de Córdoba, and the DiverSus programme through Inter-American Institute for Global Change Research (IAI) CRN 2015 and SGP-CRA2015, which were supported by the US National Science Foundation grants GEO-0452325 and GEO-1138881. GC and LE student grants are from CONICET and Fundación Bunge y Born.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Shuqing Zhao
Contribution of the co-authors
Georgina Conti conducted sampling design, field work, and data analysis and wrote the manuscript. Lucas Enrico participated in field work and in writing the manuscript. Fernando Casanoves helped in data analysis and manuscript revision. Sandra Díaz coordinated the research project and participated in writing the manuscript.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Conti, G., Enrico, L., Casanoves, F. et al. Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Annals of Forest Science 70, 515–524 (2013). https://doi.org/10.1007/s13595-013-0285-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13595-013-0285-9