Advertisement

Annals of Forest Science

, Volume 71, Issue 2, pp 117–124 | Cite as

Wood preservation (carbon sequestration) or wood burning (fossil-fuel substitution), which is better for mitigating climate change?

  • Philippe LeturcqEmail author
Opinion Paper

Abstract

Context

The effective ways of using wood production with a view to mitigating climate change are still disputed. Currently, there are two major opposing conceptions. One proposes to increase the carbon stock in forests, in wood products or in some kind of long-term wood storage, thus giving primacy to carbon sequestration. The other invokes the concept of biomass carbon neutrality to assert that the substitution of wood for fossil fuels avoids carbon emissions.

Aim and method

This paper contributes to this debate by comparing carbon footprints of heat generation when choosing wood or other fuels as alternatives.

Result

On condition that wood can be preserved with sufficient durability to meet the time frame of the necessary transition towards carbon-free energy resources (decadal to centennial time scales), one can demonstrate that the use of fossil fuels, with the exception of coal, is still preferable. The reasons are that the intrinsic carbon emission factor for wood has the highest value among all fuels in common use and that reference to the concept of wood carbon neutrality neglects the possibility of storing carbon positively in wood for a long time.

Conclusion

The conclusion is that to mitigate climate change it is better to store wood than use it as a fuel.

Keywords

Carbon footprints Carbon storage Wood energy Mitigation scenarios Geo-engineering 

Notes

Acknowledgments

The author is particularly indebted to Henri Dedieu, Brice de Turckheim, Gilles Tierle and Jean-Luc Peyron whose pertinent advices helped some ideas presented herein to mature and to Stuart D. Stein for his editorial assistance.

References

  1. Allen M, Frame D, Frieler K, Hare W, Huntingford C, Jones C, Knutti R, Meinshausen M, Meinshausen N, Raper S (2009a) The exit strategy. Nat Reports Clim Chang 3:56–58CrossRefGoogle Scholar
  2. Allen MR, Frame DJ, Huntingford C, Jones CD, Jason A, Lowe JA, Meinshausen M, Meinshausen N (2009b) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166PubMedCrossRefGoogle Scholar
  3. CONCAWE/ EUCAR/ JRC (2007) Well-to-wheels analysis of future automotive fuels and powertrains in the European context; well-to-tank report, version 2c, appendix 1, standard properties of fuelsGoogle Scholar
  4. EEA (2011) Opinion of the EEA Scientific Committee on Greenhouse Gas Accounting in relation to bioenergy. European Environment Agency, 15 September 2011Google Scholar
  5. European Commission (2003) Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003. Off J Eur Union 275:32–46, 25/10/2003, (Annex IV, p. 44)Google Scholar
  6. FAO (2010) Food and agriculture organisation of the United Nations: global forest resources assessment. FAO For Pap 163:XXIGoogle Scholar
  7. Global Carbon Project (2011) Global carbon budget 2010 released on 5 December 2011. http://www.globalcarbonproject.org/carbonbudget Data files and a complete description of data sources, calculations and uncertainties for the global carbon budget are available from: http://www.tyndall.ac.uk/global-carbon-budget-2010
  8. Haberl H, Sprinz D, Bonazountas M, Cocco P, Desaubies Y, Henze M, Ole H, Johnson RK, Kastrup U, Laconte P, Lange E, Novak P, Paavola J, Reenberg A, van den Hove S, Vermeire T, Wadhams P, Searchinger T (2012) Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energ Pol 45C:18–23. doi: 10.1016/j.enpol.2012.02.051 CrossRefGoogle Scholar
  9. IEA (2011) International Energy Agency: are we entering a golden age of gas, World energy outlook 2011 special report (Table 2.1)Google Scholar
  10. IPCC (1996) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference manual, Chapter 5 Land-Use Change & Forestry (page 5.17, Box 5 «The Fate of Harvested Wood»)Google Scholar
  11. IPCC (2006) Chapter 2: Stationary combustion. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, vol 2. IGES, JapanGoogle Scholar
  12. IPCC (2007) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M,Miller HL (eds)]. Cambridge University Press. Section 2.10 Global Warming Potentials and Other Metrics for Comparing Different EmissionsGoogle Scholar
  13. Johnson E (2008) Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 29:165–168CrossRefGoogle Scholar
  14. Johnson E, Tschudi D (2012) Baseline effects on carbon footprints of biofuels: the case of wood. Environ Impact Assess Rev 37:12–17CrossRefGoogle Scholar
  15. Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cy 15:891–907CrossRefGoogle Scholar
  16. Keesman KJ (2011) System Identification an Introduction, London Springer 2011, ISBN 978-0-85729-521-7Google Scholar
  17. Leturcq P (2011) La neutralité carbone du bois énergie: Un concept trompeur. Rev For Fr (Nancy) LVIII:723–734Google Scholar
  18. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162PubMedCrossRefGoogle Scholar
  19. Micales JA, Skog KE (1997) The decomposition of forest products in landfills. Int Biodeterior Biodegrad 39:145–158CrossRefGoogle Scholar
  20. Pingoud K, Perälä A-L, Soimakallio S, Pussinen A (2003) Greenhouse gas impacts of harvested wood products; Evaluation and development of methods. VTT Research notes 2189, Julkaisija-Utgivare Publisher (Appendix B)Google Scholar
  21. Searchinger TD, Hamburg SP, Melillo J, Chameides W, Havlik P, Kammen DM, Likens GE GE, Lubowski RN, Obersteiner M, Oppenheimer M, Robertson GP, Schlesinger WH, Tilman GD (2009) Fixing a critical climate accounting error. Science 326:527–528PubMedCrossRefGoogle Scholar
  22. SOeS (2011) Highlights, key figures on climate, France and Worldwide. Commissariat général au développement durable, Service de l’observation et des statistiques, 2011 editionGoogle Scholar
  23. Solomon S, Plattner G-K, Knuttic R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106:1704–1709PubMedCrossRefGoogle Scholar
  24. Walker T, Cardellichio P, Colnes A, Gunn J, Kittler B, Persche B, Recchia C, Saah D (2010) Biomass Sustainability and Carbon Policy Study. Manomet Center for Conservation Sciences, June 2010, NCI-2010-03.Google Scholar
  25. Zeng N (2008) Carbon sequestration via wood burial. Carbon Bal Manag 3:1. doi: 10.1186/1750-0680-3-1 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  1. 1.Toulouse University (INSA and LAAS-CNRS)AuzielleFrance

Personalised recommendations