Abstract
• Context
While historical increases in forest growth have been largely documented, investigations on historical wood density changes remain anecdotic. They suggest possible density decreases in softwoods and ring-porous hardwoods, but are lacking for diffuse-porous hardwoods.
• Aims
To evaluate the historical change in mean ring density of common beech, in a regional context where a ring-porous hardwood and a softwood have been studied, and assess the additional effect of past historical increases in radial growth (+50 % over 100 years), resulting from the existence of a positive ring size–density relationship in broadleaved species.
• Methods
Seventy-four trees in 28 stands were sampled in Northeastern France to accurately separate developmental stage and historical signals in ring attributes. First, the historical change in mean ring density at 1.30 m (X-ray microdensitometry) was estimated statistically, at constant developmental stage and ring width. The effect of past growth increases was then added to assess the net historical change in wood density.
• Results
A progressive centennial decrease in mean ring density of −55 kg m−3 (−7.5 %) was identified (−10 % following the most recent decline). The centennial growth increase induced a maximum +25 kg m−3 increase in mean ring density, whose net variation thus remained negative (−30 kg m−3).
• Conclusions
This finding of a moderate but significant decrease in wood density that exceeds the effect of the positive growth change extends earlier reports obtained on other wood patterns in a same regional context and elsewhere. Despite their origin not being understood, such decreases hence form an issue for forest carbon accounting.
Similar content being viewed by others
References
Badeau V, Becker M, Bert D, Dupouey J-L, Lebourgeois F, Picard J-F (1996) Long-term growth trends of trees: ten years of dendrochronological studies in France. In: Spiecker H, Mielikaïnen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests, EFI Research Report 5. Springer, New York, pp 167–181
Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.). Ann For Sci 54:39–50
Bergès L, Dupouey J-L, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteeth century. Trees 14:398–408
Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Chang Biol 12:862–882
Bontemps J-D, Hervé J-C, Dhôte J-F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564
Bontemps J-D, Hervé J-C, Dhôte J-F (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. For Ecol Manag 259:1455–1463
Bontemps J-D, Hervé J-C, Duplat P, Dhôte J-F (2012) Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos 121:1287–1299
Bouriaud O, Bréda N, Le Moguédec G, Nepveu G (2004) Modeling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276
Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660
Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682
Conkey LE (1988) Decline in old-growth red spruce in western Maine: an analysis of wood density and climate. Can J For Res 18:1063–1068
Croisé L, Ulrich E, Duplat P, Jaquet O (2005) Two independent methods for mapping bulk deposition in France. Atmos Environ 39:3923–3941
Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman & Hall, London
D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in Northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Chang 60:289–305
Duplat P, Tran-Ha M (1997) Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl) en France. Variabilité inter-régionale et effet de la période récente (1959–1993). Ann For Sci 54:611–634
Franceschini T, Bontemps J-D, Gelhaye P, Rittié D, Hervé J-C, Gégout J-C, Leban J-M (2010) Decreasing trend and fluctuations in the mean-ring density of Norway spruce through the twentieth century. Ann For Sci 67. doi:10.1051/forest/2010055
Franceschini T, Bontemps J-D, Leban J-M (2012) Transient historical decrease in earlywood and latewood density and unstable sensitivity to summer temperature for Norway spruce in northeastern France. Can J For Res 42:219–226
Gasson P (1987) Some implications of anatomical variations in the wood of pedunculate oak (Quercus robur L.), including comparisons with common beech (Fagus sylvatica L.). IAWA Bull 8:149–165
Gonçalves JLM, Stapea JL, Laclau J-P, Smethurst P, Gavad JL (2004) Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag 193:45–61
Govorčin S, Sinkovik T, Trajkovic J (1998) Distribution of properties in use for oak, beech and fir-wood in a radial direction. Dvrna Industrija 49:199–204
Guilley E (2000) La densité du bois de Chêne sessile (Quercus petraea Liebl.): elaboration d’un modèle pour l’analyse des variabilités intra- et inter- arbre ; origine et évaluation non destructive de l’effet “arbre” ; Interprétation anatomique du modèle proposé. Thèse de Doctorat, ENGREF, Nancy
Guilley E, Hervé J-C, Huber F, Nepveu G (1999) Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effects models and simulating the influence of contrasting silvicultures on wood density. Ann For Sci 56:449–458
Guilley E, Hervé J-C, Nepveu G (2004) The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manag 189:111–121
Hervé J-C (1999) Mixed-effects modelling of between-tree and within-tree variations: application to wood basic density in the Stem. Contract FAIR CT96-1915. Product properties prediction-improved utilization in the forestry-wood chain applied on spruce sawnwood. Subtask 2.1. CPL, Newbury.
Hillis WE (1987) Heartwood and tree exudates. Wood science. Springer, Berlin
Jacquiot C, Trenard Y, Dirol D (1973) Atlas d’anatomie des bois des angiospermes (essences feuillues). Centre Technique du Bois, Paris, 175 p
Karjalainen T, Pussinen A, Liski J, Nabuurs GJ, Eggers T, Lapvetelainen T, Kaipainen T (2003) Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy Econ 5:141–155
Karlman L, Mörling T, Martinsson O (2005) Wood density, annual ring width and latewood content in Larch and Scots Pine. Eur J For Res 8:91–96
Keller R, Le Tacon F, Timbal J (1976) La densité du bois de hêtre dans le Nord-Est de la France. Influence des caractéristiques du milieu et du type de sylviculture. Ann For Sci 33:1–17
King DA, Davis SJ, Tan S, Noor NSMD (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680
Kremer A (1994) Diversité génétique et variabilité des caractères phénotypiques chez les arbres forestiers. Genet Sel Evol 26:105–123
Lange K (1999) Numerical analysis for statisticians. Springer, New York
Lebourgeois F, Becker M, Chevalier R, Dupouey J-L, Gilbert J-M (2000) Height and radial growth trends of Corsican pine in western France. Can J For Res 30:712–724
Le Moguédec G, Dhôte J-F, Nepveu G (2002) Choosing simplified mixed models for simulations when data have a complex hierarchical organization. An example with some basic properties in Sessile oak wood (Quercus petraea Liebl.). Ann For Sci 59:847–855
Lindström MJ, Bates DM (1990) Nonlinear mixed effect models for repeated measures data. Biometrics 46:673–687
Mäkinen H (1997) Reducing the effects of disturbance on tree-ring data using intervention detection. Scand J For Res 12:351–355
Moisselin JM, Schneider M, Canellas C, Mestre O (2002) Les changements climatiques en France au XXe siècle. Etude des longues séries homogénéisées de données de température et de précipitations. La Météorologie 38:45–56
Møller CM, Müller D (1938) Aanding i aeldre Stammer. Forstlige Forsøgsvaesen i Danmark 15:113–138
Mörling T (2002) Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann For Sci 59:29–40
Mothe F, Duchanois G, Zannier B, Leban J-M (1998) Analyse microdensitométrique appliquée au bois: méthode de traitement des données utilisée à l’inra-ERQB (programme Cerd). Ann For Sci 55:301–313
Nepveu G (1981a) Propriétés du bois de hêtre. In: Teissier du Cros E (ed) Le Hêtre. INRA, Paris, pp 377–396
Nepveu G (1981b) Prédiction juvénile de la qualité du bois de hêtre. Ann For Sci 38:425–447
Nepveu G (1999) Possible effects on wood quality to expect from accelerating tree growth in Europe: tentative answers and questions to accommodate. In: Karjalainen T, Spiecker H, Laroussinie O (eds) Causes and consequences of accelerating tree growth in Europe, EFI proceeding n°27, EFI, Joensuu, pp 207–216
Nečesaný V (1958) Zmena vitality parenchymatickych bunek jako fysiologicky zaklad tvorby jadra buku. Drevarsky Vyskum 3:15–23
Peltola H, Kilpeläinen A, Sauvala K, Räisänen T, Ikonen V-P (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silv Fenn 41:489–505
Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York
Polge H (1973) Etat actuel des recherches sur la qualité du bois de hêtre. Bull Tech de l’ONF 4:13–22
Polge H, Nicholls JWP (1972) Quantitative radiography and the densitometric analysis of wood. Wood Sci 5:51–59
Rao RV, Aebischer DP, Denne MP (1997) Latewood density in relation to wood fiber diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J 18:127–138
Rosell JA, Olson ME (2007) Testing implicit assumptions regarding the age vs. size dependence of stem biomechanics using Pittocaulon (Senecio) praecox (Asteraceae). Am J Bot 94:161–172
Rozenberg P, Franc A, Bastien C, Cahalan C (2001) Improving models of wood density by including genetic effects: a case study in Douglas fir. Ann For Sci 58:385–394
Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252
Schäfer KVR, Oren R, Tenhunen JD (2000) The effect of tree height on crown level stomatal conductance. Plant Cell Environ 23:365–375
Sharma RP, Brunner A, Eid T (2012) Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scand J For Res 27:619–636
Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests, Research report no 5. Springer, Berlin
Spiecker H (1999) Growth trends in European forests—do we have sufficient knowledge? In: Karjalainen T, Spiecker H, Laroussinie O (eds) Causes and consequences of accelerating tree growth in Europe, EFI proceeding no 27, EFI, Joensuu, pp 157–169
Süss H, Müller-Stoll WR (1972) Relations between the development of some wood features and the ring width in Beech (Fagus silvatica L.). Holz Roh Verkstoff 30:342–346
Venet J (1963) Etudes de qualité de dix échantillonnages de bois d’essences diverses provenant de Corse. Ecole Nationale des Eaux et Forêts, Nancy
Zhang SY (1995) Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451–465
Zobel B (1992) Silvicultural effects on wood properties. IPEF Int Piracicaba 2:31–33
Acknowledgments
The authors gratefully thank an anonymous reviewer and the Editor-in-chief of this journal for their helpful comments to clarify a previous version of this manuscript. We also wish to thank Dr Frédéric Mothe (INRA) for his advice on microdensitometric measurements, and Dr Jean-Michel Leban and Dr Tony Franceschini (INRA) for stimulating discussions on wood density variations and their determinants. The first author dedicates this article to Suzanne Bontemps born Tisserand (d. 13 March 2012).
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Erwin Dreyer
Contribution of the co-authors
Jean-Daniel BONTEMPS: designed and performed the analyses and wrote the manuscript
Pierre GELHAYE: performed the X-ray microdensitometry measurements and prepared the dataset
Gérard NEPVEU: provided concepts and literature on analysing wood density trends, contributed to the manuscript writing
Jean-Christophe HERVÉ: coordinated the project and brought statistical expertise for the analysis
Electronic supplementary material
Below is the link to the electronic supplementary material.
Electronic supplementary material 1
DOC 29.5 kb
Rights and permissions
About this article
Cite this article
Bontemps, JD., Gelhaye, P., Nepveu, G. et al. When tree rings behave like foam: moderate historical decrease in the mean ring density of common beech paralleling a strong historical growth increase. Annals of Forest Science 70, 329–343 (2013). https://doi.org/10.1007/s13595-013-0263-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13595-013-0263-2