Advertisement

Annals of Forest Science

, Volume 70, Issue 4, pp 329–343 | Cite as

When tree rings behave like foam: moderate historical decrease in the mean ring density of common beech paralleling a strong historical growth increase

  • Jean-Daniel BontempsEmail author
  • Pierre Gelhaye
  • Gérard Nepveu
  • Jean-Christophe Hervé
Original Paper

Abstract

Context

While historical increases in forest growth have been largely documented, investigations on historical wood density changes remain anecdotic. They suggest possible density decreases in softwoods and ring-porous hardwoods, but are lacking for diffuse-porous hardwoods.

Aims

To evaluate the historical change in mean ring density of common beech, in a regional context where a ring-porous hardwood and a softwood have been studied, and assess the additional effect of past historical increases in radial growth (+50 % over 100 years), resulting from the existence of a positive ring size–density relationship in broadleaved species.

Methods

Seventy-four trees in 28 stands were sampled in Northeastern France to accurately separate developmental stage and historical signals in ring attributes. First, the historical change in mean ring density at 1.30 m (X-ray microdensitometry) was estimated statistically, at constant developmental stage and ring width. The effect of past growth increases was then added to assess the net historical change in wood density.

Results

A progressive centennial decrease in mean ring density of −55 kg m−3 (−7.5 %) was identified (−10 % following the most recent decline). The centennial growth increase induced a maximum +25 kg m−3 increase in mean ring density, whose net variation thus remained negative (−30 kg m−3).

Conclusions

This finding of a moderate but significant decrease in wood density that exceeds the effect of the positive growth change extends earlier reports obtained on other wood patterns in a same regional context and elsewhere. Despite their origin not being understood, such decreases hence form an issue for forest carbon accounting.

Keywords

Fagus sylvatica Wood density X-ray microdensitometry Historical change Ring width Growth change 

Notes

Acknowledgments

The authors gratefully thank an anonymous reviewer and the Editor-in-chief of this journal for their helpful comments to clarify a previous version of this manuscript. We also wish to thank Dr Frédéric Mothe (INRA) for his advice on microdensitometric measurements, and Dr Jean-Michel Leban and Dr Tony Franceschini (INRA) for stimulating discussions on wood density variations and their determinants. The first author dedicates this article to Suzanne Bontemps born Tisserand (d. 13 March 2012).

Supplementary material

13595_2013_263_MOESM1_ESM.doc (30 kb)
Electronic supplementary material 1 DOC 29.5 kb

References

  1. Badeau V, Becker M, Bert D, Dupouey J-L, Lebourgeois F, Picard J-F (1996) Long-term growth trends of trees: ten years of dendrochronological studies in France. In: Spiecker H, Mielikaïnen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests, EFI Research Report 5. Springer, New York, pp 167–181CrossRefGoogle Scholar
  2. Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.). Ann For Sci 54:39–50CrossRefGoogle Scholar
  3. Bergès L, Dupouey J-L, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteeth century. Trees 14:398–408CrossRefGoogle Scholar
  4. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Chang Biol 12:862–882CrossRefGoogle Scholar
  5. Bontemps J-D, Hervé J-C, Dhôte J-F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  6. Bontemps J-D, Hervé J-C, Dhôte J-F (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. For Ecol Manag 259:1455–1463CrossRefGoogle Scholar
  7. Bontemps J-D, Hervé J-C, Duplat P, Dhôte J-F (2012) Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos 121:1287–1299CrossRefGoogle Scholar
  8. Bouriaud O, Bréda N, Le Moguédec G, Nepveu G (2004) Modeling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276CrossRefGoogle Scholar
  9. Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660PubMedCrossRefGoogle Scholar
  10. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  11. Conkey LE (1988) Decline in old-growth red spruce in western Maine: an analysis of wood density and climate. Can J For Res 18:1063–1068CrossRefGoogle Scholar
  12. Croisé L, Ulrich E, Duplat P, Jaquet O (2005) Two independent methods for mapping bulk deposition in France. Atmos Environ 39:3923–3941CrossRefGoogle Scholar
  13. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman & Hall, LondonGoogle Scholar
  14. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in Northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Chang 60:289–305CrossRefGoogle Scholar
  15. Duplat P, Tran-Ha M (1997) Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl) en France. Variabilité inter-régionale et effet de la période récente (1959–1993). Ann For Sci 54:611–634CrossRefGoogle Scholar
  16. Franceschini T, Bontemps J-D, Gelhaye P, Rittié D, Hervé J-C, Gégout J-C, Leban J-M (2010) Decreasing trend and fluctuations in the mean-ring density of Norway spruce through the twentieth century. Ann For Sci 67. doi: 10.1051/forest/2010055
  17. Franceschini T, Bontemps J-D, Leban J-M (2012) Transient historical decrease in earlywood and latewood density and unstable sensitivity to summer temperature for Norway spruce in northeastern France. Can J For Res 42:219–226CrossRefGoogle Scholar
  18. Gasson P (1987) Some implications of anatomical variations in the wood of pedunculate oak (Quercus robur L.), including comparisons with common beech (Fagus sylvatica L.). IAWA Bull 8:149–165Google Scholar
  19. Gonçalves JLM, Stapea JL, Laclau J-P, Smethurst P, Gavad JL (2004) Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag 193:45–61CrossRefGoogle Scholar
  20. Govorčin S, Sinkovik T, Trajkovic J (1998) Distribution of properties in use for oak, beech and fir-wood in a radial direction. Dvrna Industrija 49:199–204Google Scholar
  21. Guilley E (2000) La densité du bois de Chêne sessile (Quercus petraea Liebl.): elaboration d’un modèle pour l’analyse des variabilités intra- et inter- arbre ; origine et évaluation non destructive de l’effet “arbre” ; Interprétation anatomique du modèle proposé. Thèse de Doctorat, ENGREF, NancyGoogle Scholar
  22. Guilley E, Hervé J-C, Huber F, Nepveu G (1999) Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effects models and simulating the influence of contrasting silvicultures on wood density. Ann For Sci 56:449–458CrossRefGoogle Scholar
  23. Guilley E, Hervé J-C, Nepveu G (2004) The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manag 189:111–121CrossRefGoogle Scholar
  24. Hervé J-C (1999) Mixed-effects modelling of between-tree and within-tree variations: application to wood basic density in the Stem. Contract FAIR CT96-1915. Product properties prediction-improved utilization in the forestry-wood chain applied on spruce sawnwood. Subtask 2.1. CPL, Newbury.Google Scholar
  25. Hillis WE (1987) Heartwood and tree exudates. Wood science. Springer, BerlinCrossRefGoogle Scholar
  26. Jacquiot C, Trenard Y, Dirol D (1973) Atlas d’anatomie des bois des angiospermes (essences feuillues). Centre Technique du Bois, Paris, 175 pGoogle Scholar
  27. Karjalainen T, Pussinen A, Liski J, Nabuurs GJ, Eggers T, Lapvetelainen T, Kaipainen T (2003) Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy Econ 5:141–155CrossRefGoogle Scholar
  28. Karlman L, Mörling T, Martinsson O (2005) Wood density, annual ring width and latewood content in Larch and Scots Pine. Eur J For Res 8:91–96Google Scholar
  29. Keller R, Le Tacon F, Timbal J (1976) La densité du bois de hêtre dans le Nord-Est de la France. Influence des caractéristiques du milieu et du type de sylviculture. Ann For Sci 33:1–17CrossRefGoogle Scholar
  30. King DA, Davis SJ, Tan S, Noor NSMD (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680CrossRefGoogle Scholar
  31. Kremer A (1994) Diversité génétique et variabilité des caractères phénotypiques chez les arbres forestiers. Genet Sel Evol 26:105–123CrossRefGoogle Scholar
  32. Lange K (1999) Numerical analysis for statisticians. Springer, New YorkGoogle Scholar
  33. Lebourgeois F, Becker M, Chevalier R, Dupouey J-L, Gilbert J-M (2000) Height and radial growth trends of Corsican pine in western France. Can J For Res 30:712–724CrossRefGoogle Scholar
  34. Le Moguédec G, Dhôte J-F, Nepveu G (2002) Choosing simplified mixed models for simulations when data have a complex hierarchical organization. An example with some basic properties in Sessile oak wood (Quercus petraea Liebl.). Ann For Sci 59:847–855CrossRefGoogle Scholar
  35. Lindström MJ, Bates DM (1990) Nonlinear mixed effect models for repeated measures data. Biometrics 46:673–687PubMedCrossRefGoogle Scholar
  36. Mäkinen H (1997) Reducing the effects of disturbance on tree-ring data using intervention detection. Scand J For Res 12:351–355CrossRefGoogle Scholar
  37. Moisselin JM, Schneider M, Canellas C, Mestre O (2002) Les changements climatiques en France au XXe siècle. Etude des longues séries homogénéisées de données de température et de précipitations. La Météorologie 38:45–56CrossRefGoogle Scholar
  38. Møller CM, Müller D (1938) Aanding i aeldre Stammer. Forstlige Forsøgsvaesen i Danmark 15:113–138Google Scholar
  39. Mörling T (2002) Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann For Sci 59:29–40CrossRefGoogle Scholar
  40. Mothe F, Duchanois G, Zannier B, Leban J-M (1998) Analyse microdensitométrique appliquée au bois: méthode de traitement des données utilisée à l’inra-ERQB (programme Cerd). Ann For Sci 55:301–313CrossRefGoogle Scholar
  41. Nepveu G (1981a) Propriétés du bois de hêtre. In: Teissier du Cros E (ed) Le Hêtre. INRA, Paris, pp 377–396Google Scholar
  42. Nepveu G (1981b) Prédiction juvénile de la qualité du bois de hêtre. Ann For Sci 38:425–447CrossRefGoogle Scholar
  43. Nepveu G (1999) Possible effects on wood quality to expect from accelerating tree growth in Europe: tentative answers and questions to accommodate. In: Karjalainen T, Spiecker H, Laroussinie O (eds) Causes and consequences of accelerating tree growth in Europe, EFI proceeding n°27, EFI, Joensuu, pp 207–216Google Scholar
  44. Nečesaný V (1958) Zmena vitality parenchymatickych bunek jako fysiologicky zaklad tvorby jadra buku. Drevarsky Vyskum 3:15–23Google Scholar
  45. Peltola H, Kilpeläinen A, Sauvala K, Räisänen T, Ikonen V-P (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silv Fenn 41:489–505Google Scholar
  46. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  47. Polge H (1973) Etat actuel des recherches sur la qualité du bois de hêtre. Bull Tech de l’ONF 4:13–22Google Scholar
  48. Polge H, Nicholls JWP (1972) Quantitative radiography and the densitometric analysis of wood. Wood Sci 5:51–59Google Scholar
  49. Rao RV, Aebischer DP, Denne MP (1997) Latewood density in relation to wood fiber diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J 18:127–138Google Scholar
  50. Rosell JA, Olson ME (2007) Testing implicit assumptions regarding the age vs. size dependence of stem biomechanics using Pittocaulon (Senecio) praecox (Asteraceae). Am J Bot 94:161–172PubMedCrossRefGoogle Scholar
  51. Rozenberg P, Franc A, Bastien C, Cahalan C (2001) Improving models of wood density by including genetic effects: a case study in Douglas fir. Ann For Sci 58:385–394CrossRefGoogle Scholar
  52. Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252CrossRefGoogle Scholar
  53. Schäfer KVR, Oren R, Tenhunen JD (2000) The effect of tree height on crown level stomatal conductance. Plant Cell Environ 23:365–375CrossRefGoogle Scholar
  54. Sharma RP, Brunner A, Eid T (2012) Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scand J For Res 27:619–636CrossRefGoogle Scholar
  55. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests, Research report no 5. Springer, BerlinGoogle Scholar
  56. Spiecker H (1999) Growth trends in European forests—do we have sufficient knowledge? In: Karjalainen T, Spiecker H, Laroussinie O (eds) Causes and consequences of accelerating tree growth in Europe, EFI proceeding no 27, EFI, Joensuu, pp 157–169Google Scholar
  57. Süss H, Müller-Stoll WR (1972) Relations between the development of some wood features and the ring width in Beech (Fagus silvatica L.). Holz Roh Verkstoff 30:342–346CrossRefGoogle Scholar
  58. Venet J (1963) Etudes de qualité de dix échantillonnages de bois d’essences diverses provenant de Corse. Ecole Nationale des Eaux et Forêts, NancyGoogle Scholar
  59. Zhang SY (1995) Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451–465CrossRefGoogle Scholar
  60. Zobel B (1992) Silvicultural effects on wood properties. IPEF Int Piracicaba 2:31–33Google Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Jean-Daniel Bontemps
    • 1
    • 2
    • 4
    Email author
  • Pierre Gelhaye
    • 1
    • 2
  • Gérard Nepveu
    • 1
    • 2
  • Jean-Christophe Hervé
    • 3
  1. 1.AgroParisTech, ENGREF, UMR 1092 INRA-AgroParisTechLERFoB (Laboratoire d’Etude des Ressources Forêt-Bois)NancyFrance
  2. 2.INRA, UMR 1092 INRA-AgroParisTechLERFoB (Laboratoire d’Etude des Ressources Forêt-Bois)ChampenouxFrance
  3. 3.Institut National de l’Information Géographique et Forestière, IGNNancyFrance
  4. 4.AgroParisTech, LERFoBÉquipe Ecologie ForestièreNancyFrance

Personalised recommendations