Skip to main content

Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture

Abstract

Context

Fir species are mainly distributed across the high latitudes, preferring cold climates. The phylogeographic origins of those subtropical fir species that occur in low latitudes in southern China remain elusive, as does the nature of any inter-lineage hybridization.

Aims

In fir species, mitochondrial DNA (mtDNA) is maternally inherited and chloroplast DNA (cpDNA) is paternally inherited, and the genetic variations in the two make them particularly useful for examining species’ hybridizations and evolutionary histories.

Materials and methods

We sequenced four DNA fragments: two of mtDNA and two of cpDNA for 161 individuals from four subtropical endangered fir species (Abies beshanzuensis, Abies ziyuanensis, Abies yuanbaoshanensis, and Abies fanjingshanensis) and two more northerly distributed ones (Abies recurvata and Abies fargesii) from central and southwest China.

Results

Three mitotypes and four chlorotypes were recovered from the four southern species. In most populations, individuals share a single fixed mitotype and chlorotype. Three mitotypes clustered into two distinct clades, each associated with one of the northern species examined. For four chlorotypes, one occurred in A. ziyuanensis, A. beshanzuensis, A. fargesii, and A. recurvata, another in A. ziyuanensis and A. recurvata, the remaining two differed from others by two mutations exclusively in A. fanjingshanenis and A. yuanbaoshanensis.

Conclusion

Phylogeographic origins of the subtropical fir species are complex, and genetic admixtures occurred during the evolutionary history of A. ziyuanensis. The genotyped populations further provide basic frames for genetic delimitation and effective conservation of these endangered species in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abbott RJ, Brennan AC, Hegarty MJ, Hiscock SJ (2010) Homoploid hybrid speciation in action. Taxon 59:1375–1386

    Google Scholar 

  2. Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer, Sunderland

    Google Scholar 

  3. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  4. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    PubMed  Article  CAS  Google Scholar 

  5. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  6. Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Mol Ecol 18:1396–1407

    PubMed  Article  CAS  Google Scholar 

  7. Excoffier L, Laval G, Schneider S (2006) ARLEQUIN ver 31: an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne, Berne

  8. Farjon A (1990) Pinaceae. Koeltz Scientific Book, Germany

  9. Farjon A, Rushforth KD (1989) A classification of Abies Miller (Pinaceae). Notes Roy Bot Gard Edinburgh 46:59–77

    Google Scholar 

  10. Florin R (1963) The distribution of conifer and taxad genera in time and space. Acta Hort Berg 20:194–256

    Google Scholar 

  11. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge

    Google Scholar 

  12. Fu LK, Li N and Robert RM (1999) Sections on Cephalotaxaceae, Ginkgoaceae and Pinaceae. In: Wu ZY and Peter HR (ed) Flora of China, Volume 4. Science Press, Beijing

  13. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B 359:183–195

    Article  CAS  Google Scholar 

  14. Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J Biogeogra 36:476–480

    Article  Google Scholar 

  15. Jaramillo-Correa JP, Beaulieu J, Bousquet J (2004) Variation in mitochondrial DNA reveals mutilple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol Ecol 13:2735–2747

    PubMed  Article  CAS  Google Scholar 

  16. Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Pinero D, Furnier GR, Bousquet J (2008) Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern Mexico and Guatemala. Mol Ecol 17:2476–2490

    PubMed  Article  CAS  Google Scholar 

  17. Li N (1995) Study on the geographic distribution, origin and dispersal of the family Pinaceae. Lindl Acta Phytotaxon Sin 33:105–130

    Google Scholar 

  18. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594

    PubMed  Article  CAS  Google Scholar 

  19. Liepelt S, Mayland-Quellhorst E, Lahme M, Ziegenhagen B (2010) Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Syst Evol 284:141–151

    Article  Google Scholar 

  20. Liu TS (1971) A monograph of the genus Abies. The Department of Forestry College of Agriculture, National Taiwan University, Taipei

    Google Scholar 

  21. Liu ZL, Fang JY, Piao SL (2002) Geographical distribution of species in genera Abies, Picea and Larix in China. Acta Geogr Sin 57:577–586

    Google Scholar 

  22. Ning S, Tang R, Cao J (2005) Current status and conservation countermeasures of germplasm resources of Abies ziyuanensis. Guihaia 25:191–200 (in Chinese with English abstract)

    Google Scholar 

  23. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  Google Scholar 

  24. Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    PubMed  Article  Google Scholar 

  25. Song BH, Wang XQ, Wang XR, Ding KY, Hong DY (2003) Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Mol Ecol 12:2995–3001

    PubMed  Article  Google Scholar 

  26. Stehlik I, Blattner FR, Hokderegger R, Bachmann K (2002) Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the central Alps during the ice ages. Mol Ecol 11:2027–2036

    PubMed  Article  CAS  Google Scholar 

  27. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    PubMed  Article  CAS  Google Scholar 

  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  29. Tang S, Dai W, Li M, Zhang Y, Geng Y, Wang L, Zhong Y (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30

    PubMed  Article  CAS  Google Scholar 

  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 25:4876–4882

    Article  CAS  Google Scholar 

  31. Tsumura Y, Suyama Y (1998) Differentiation of mitochondrial DNA polymophisms in populations of five Japanese Abies species. Evolution 52:1031–1042

    Article  CAS  Google Scholar 

  32. Wang J, Abbott RJ, Peng YL, Du FK, Liu JQ (2011) Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variation. Heredity 107(4):362–370. doi:10.1038/hdy.2011.22

    Google Scholar 

  33. Wu JY, Krutovskii KV, Strauss SH (1998) Abundant mitochondral genomediversity, population differentiation and convergent evolution in pines. Genetics 150:1605–1614

    PubMed  CAS  Google Scholar 

  34. Xiang QP (2001) A preliminary survey on the distribution of rare and endangered plants of Abies in China. Guihaia 21:113–117 (in Chinese with English abstract)

    Google Scholar 

  35. Xiang QP, Xiang QY, Guo YY, Zhang XC (2009) Phylogeny of Abies (Pinaceae) inferred from nrITS sequence data. Taxon 58:141–152

    Google Scholar 

  36. Ying TS (1989) Areography of the gymnosperms of China (1): distribution of the Pinaceae of China. Acta Phytotaxo Sin 27:27–38

    Google Scholar 

  37. Zhang YR, Luo JC, Gui XJ (2004) Study on the protection and breeding of the imminent danger species Abies ziyuanensis L. K. Fu. Huna Forest Sci Tech 31:26–29

    Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their constructive suggestions. We thank John Blackwell for polishing the English of the final version.

Funding

This research was supported by grants from the Natural Science Foundation of China (Grant numbers 30725004) to J. Q. L.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianquan Liu.

Additional information

Contribution of the co-authors

J.L. designed research; J.L., B.T., and G.R. collected samples; Y.P., J.W., Q.G, and B.T. performed research; Y.P. and J.L. analyzed data; and Y.P., S.Y. and J.L. wrote the paper.

Yanling Peng and Shuming Yin contributed equally to the work.

Handling Editor: Christophe Plomion

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Locations of populations and sample sizes (N) of six closely related Abies spp. examined to determine mtDNA and cpDNA haplotypes. For each population, estimates of genetic diversity (H E) and nucleotide diversity (π) are given as a percentage (DOCX 20 kb)

Table S2

Variable sites of aligned sequences of two mtDNA fragments (nad7-1 and nad5-4) and two cpDNA fragments (trnS-G and trnL-F) from which five mitotypes and 17 chlorotypes were recorded across six closely related Abies spp. Sequences are numbered from the 5′ to the 3′ end in each region (DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, Y., Yin, S., Wang, J. et al. Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture. Annals of Forest Science 69, 409–416 (2012). https://doi.org/10.1007/s13595-011-0170-3

Download citation

Keywords

  • Fir species
  • mtDNA
  • cpDNA
  • Phylogeography
  • Genetic admixture