Skip to main content

Advertisement

Log in

Joint simulation of stand dynamics and landscape evolution using a tree-level model for mixed uneven-aged forests

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

• Context

A century and more after a major reforestation program, large areas in the French Southern Alps have moved to a landscape mosaic of old pine plantations and new, heterogeneous and uneven-aged, mixed stands. These conditions are challenging foresters in silvicultural practices and management choices.

• Aims

The aims of this study are to understand, analyze, model, and simulate the ongoing phenomena, and to propose a decision-making tool.

• Methods

An individual-based forest dynamics model considering recruitment, growth, and mortality (as related to the spatial arrangement of stands and species, to site conditions and competition) and a simulation system including spatial sampling are designed and calibrated to allow simulation of both silviculture treatments at the stand level and management strategies at the forest or landscape level.

• Results

By keeping track of the trees while simulating at the forest level, they offer an alternative to upscaling strategies and a suitable tool for prediction of stand and forest characteristics in situations influenced by strong driving forces such as colonization and forest maturation.

• Conclusion

This approach is a straightforward means for adjusting forest management to trends such as expansion of shade-tolerant species; as spatial and temporal variation in site conditions are accounted for, it is also a promising way towards predicting their warming-induced upward shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrudan IV, Mather RA (1999) The influence of site factors on the composition and structure of semi-natural mixed-species stands of beech (Fagus sylvatica), silver fir (Abies alba) and Norway spruce (Picea abies) in the Upper Draganul Watershed of North-West Romania. Forestry 72:87–93

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced mortality reveals emerging climate change risks for forests. Forest Ecol Manage 259:660–684

    Article  Google Scholar 

  • Arney JD (1985) A modeling strategy for the growth projection of managed stands. Can J For Res 15:511–518

    Article  Google Scholar 

  • Baker WL (1989) A review of models of landscape change. Landsc Ecol 2:111–133

    Article  Google Scholar 

  • Batho A, Garcia O (2006) De Perthuis and the origins of site index: a historical note. FBMIS 1:1–10

    Google Scholar 

  • Bénichou P, Le Breton O (1987) Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques. La Météorologie, 7e Série 19:23–34

    Google Scholar 

  • Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074

    Article  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Chang 51:259–305

    Article  Google Scholar 

  • Bugmann H, Lindner M, Lasch P, Flechsig M, Ebert B, Cramer W (2000) Scaling issues in forest succession modelling. Clim Chang 44:265–289

    Article  Google Scholar 

  • Cailleret M, Davi H (2010) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees-Struct. Func., published online, doi:10.1007/s00468-010-0503-0, 12 p

  • Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Coates KD, Burton PJ (1997) A gap-based approach for development of silvicultural systems to address ecosystem management objectives. For Ecol Manage 99:337–354

    Article  Google Scholar 

  • Crecente-Campo F, Marshall P, Rodríguez-Soalleiro R (2009) Modeling non-catastrophic individual-tree mortality for Pinus radiata plantations in northwestern Spain. For Ecol Manage 257:1542–1550

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • Debain S, Chadoeuf J, Curt T, Kunstler G, Lepart J (2007) Comparing effective dispersal in expanding population of Pinus sylvestris and Pinus nigra in calcareous grassland. Can J For Res 37:705–718

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Dhôte JF (1991) Modélisation de la croissance des peuplements réguliers de hêtre: dynamique des hiérarchies sociales et facteurs de production. Ann For Sci 48:389–416

    Article  Google Scholar 

  • Didion M, Kupferschmid AD, Zingg A, Fahse L, Bugmann H (2009) Gaining local accuracy while not losing generality - extending the range of gap model applications. Can J For Res 39:1092–1107

    Article  Google Scholar 

  • Dreyfus Ph (2008) Dynamiques du Sapin, du Hêtre et des Pins dans l’arrière-pays méditerranéen: de la modélisation à l’aide à la gestion. Revue Forestière Française 60:233–249

    Google Scholar 

  • Dufour-Kowalski S, Courbaud B, Dreyfus Ph, Meredieu C, de Coligny F (2011) Capsis: an open software framework and community for forest growth modelling. Ann For Sci. doi:10.1007/s13595-011-0140-9

  • Emberger C (2010) De la modélisation à la cartographie à large échelle des sols forestiers: vers une amélioration de l’estimation des potentialités forestières. M of Sci. University Paris 1 and INRA URFM, Avignon (FRA), p 60

    Google Scholar 

  • Fleming RA, Barclay HJ, Candau JN (2002) Scaling-up an autoregressive time-series model (of spruce budworm population dynamics) changes its qualitative behavior. Ecol Model 149:127–142

    Article  Google Scholar 

  • Fontes L, Bontemps JD, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. Forest Systems 19:8–29

    Google Scholar 

  • Heegaard E, Vandvik V (2004) Climate change affects the outcome of competitive interactions - an application of principal response curves. Oecologia 139:459–466

    Article  PubMed  Google Scholar 

  • Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon A, Wyckoff P (2001) Tree mortality in gap models: application to climate change. Clim Chang 51:509–540

    Article  Google Scholar 

  • Kunstler G, Curt T, Bouchaud M, Lepart J (2005) Growth, mortality and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest. Can J For Res 35:1657–1668

    Article  Google Scholar 

  • Ladier J (2004) Les stations forestières des Préalpes sèches; définition, répartition, dynamique, fertilité. Office National des Forêts, DT Méditerranée, Cellule Régionale d’Appui Technique, 124 p

  • Le Roux X, Lacointe A, Escobar-Gutiérrez A, Le Dizès S (2001) Carbon-based models of individual tree growth - A critical appraisal. Ann For Sci 58:469–506

    Article  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Loffler TJ (2006) TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420

    Article  Google Scholar 

  • Liu J, Ashton PS (1998) FORMOSAIC: An individual-based spatially explicit model for simulating forest dynamics in landscape mosaics. Ecol Model 106:177–200

    Article  Google Scholar 

  • MEDCIE (ed.) (2008) Etude des effets du changement climatique sur le Grand Sud-Est - Etape 1. Rapport Provence-Alpes-Côte d’Azur. Prefectures of regions Auvergne, Corse and PACA, DIACT, AlternConsult, Ecofys France. Ed: Mission d’Etude et de Développement des Coopérations Interrégionales et Européennes Grand Sud-Est. 268 p.

  • Mendoza GA, Vanclay JK (2008) Trends in forestry modelling. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol. 3, no. 010

  • Nanos N, Larson K, Milleron M, Sjostedt-de Luna S (2010) Inverse modelling for effective dispersal: do we need tree size to estimate fecundity? Ecol Model 221:2415–2424

    Article  Google Scholar 

  • Oliva J, Colinas C (2007) Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: Role of management, historic dynamics and pathogens. For Ecol Manage 252:84–97

    Article  Google Scholar 

  • Omule SAY, MacDonald RN (1991) Simultaneous curve fitting for repeated height-diameter measurements. Can J For Res 21:1418–1422

    Article  Google Scholar 

  • Piedallu C, Gégout JC, Bruand A, Seynave I (2010) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma. doi:10.1016/j.geoderma.2010.10.004

  • Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest management. Ecol Model 150:141–188

    Article  Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Price DT, Zimmermann NE, van der Meer PJ, Lexer MJ, Leadley P, Jorritsma ITM, Schaber J, Clark DF, Lasch P, McNulty S, Wu J, Smith B (2001) Regeneration in gap models: priority issues for studying forest response to climate change. Clim Change 51:475–508

    Article  Google Scholar 

  • Rachedi S (2008) Contribution à l’étude des mécanismes écologiques impliqués dans le dépérissement du sapin pectiné (Abies alba Miller) et caractérisation sanitaire au Mont-Ventoux. M of Sci. AgroParisTech, Montpellier (FRA) and INRA URFM, Avignon (FRA), p 59 p

    Google Scholar 

  • Rietkerk MG, van de Koppel J, Kumar L, van Langevelde F, Prins HHT (2002) The ecology of scale. Ecol Model 149:1–4

    Article  Google Scholar 

  • Sagnard F, Pichot C, Dreyfus P, Jordano P, Fady B (2007) Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest. Ecol Model 203:464–474

    Article  Google Scholar 

  • Soares P, Tomé M, Skovsgaard JP, Vanclay JK (1995) Validating growth models for forest management using continuous forest inventory data. For Ecol Manage 71:251–266

    Article  Google Scholar 

  • Stadt KJ, Huston C, Coates KD, Dale MRT, Lieffers VJ (2007) Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann For Sci 64:477–490

    Article  Google Scholar 

  • Tonon G, Panzacchi P, Grassi G, Gianfranco M, Cantoni L, Bagnaresi U (2005) Spatial dynamics of late successional species under Pinus nigra stands in the northern Apennines (Italy). Ann For Sci 62:669–679

    Article  Google Scholar 

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  • Urban DL, Acevedo MF, Garman SL (1999) Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models. In: Mladenoff D, Baker W (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 70–98

    Google Scholar 

  • Wunder J, Reineking B, Matter JF, Bigler C, Bugmann H (2007) Predicting tree death for Fagus sylvatica and Abies alba using permanent plot data. J Veg Sci 18:525–534

    Article  Google Scholar 

  • Wykoff WR (1990) A basal area increment model for individual conifers in the northern Rocky Mountains. For Sci 36:1077–1104

    Google Scholar 

  • Yang Y, Titus SJ, Huang S (2003) Modeling individual tree mortality for white spruce in Alberta. Ecol Model 163:209–222

    Article  Google Scholar 

Download references

Acknowledgments

First of all, I would like to express my gratitude to the research technicians involved in establishing plots and in data collection, especially to Maurice Turrel and Nicolas Mariotte as reliable and essential forest technicians. I also thank the non-permanent staff and the students who participated in measuring the experiments. I am particularly grateful to the French National Forest Service (ONF) involved since the initiation of this program, to its head in Avignon, its local officers on the mount Ventoux, and its research unit (namely to Jean Ladier), for help in finding suitable survey sites and for information about forest stands and site conditions. I am also greatly indebted to the French National Forest Inventory (IFN), namely to Nabila Hamza and Éric Bruno, for providing a large dataset and explanations about the methods of IFN. Special thanks go to François de Coligny (INRA-AMAP), always available for assistance in programming on Capsis platform. Thanks also to INRA URFM administrative staff for assistance in management of the financial support mentioned hereafter. Finally, many thanks to three reviewers who provided constructive comments and suggestions on earlier versions of the manuscript.

Funding

This study was partly supported by ECOFOR (www.gip-ecofor.org) and by the French Ministry in charge of Ecology and Sustainable Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dreyfus.

Additional information

Handling Editor: Daniel Auclair

Appendix: Parameter estimates and regression statistics for each submodel and species

Appendix: Parameter estimates and regression statistics for each submodel and species

Hereafter, “R 2” denotes the coefficient of determination, “mean” is the mean of dependent variable, “CVR” is the residual coefficient of variation (standard deviation of the residuals divided by the mean of the dependent variable), in percent, and “N” is the sample size.

Recruitment submodel (see also Fig. 1)

$$ Log(smallsdgs + 1.1) = r1 + r2 \cdot {\left( {neardist + 15} \right)^{{ - r3}}} $$
(1a)

Abies alba

(R 2 = 0.67, mean = 0.55/year, CVR = 105%, N = 59)

Parameter

Value

Standard error

r1

−0.51

0.56

r2

11.65

3.69

r3

0.40

0.15

Pinus nigra

(R 2 = 0.13, mean = 0.39/year, CVR = 155%, N = 179)

Parameter

Value

Standard error

r1

−0.046

0.129

r2

5

fixed

r3

0.75

0.09

Pinus sylvestris

(R 2 = 0.06, mean = 0.17/year, CVR = 137%, N = 214)

Parameter

Value

Standard error

r1

0.10

0.06

r2

1.04

2.13

r3

0.70

0.84

Pinus uncinata

(R 2 = 0.05, mean = 0.21/year, CVR = 162%, N = 188)

Parameter

Value

Standard error

r1

0.10

fixed

r2

1.02

0.88

r3

0.56

0.28

$$ Log(smallsdgs + 1.1) = r1 \cdot {e^{{ - r2 \cdot {{\left( {neardist + 15} \right)}^{{r3}}}}}} $$
(1b)

Fagus sylvatica

(R 2 = 0.27, mean = 1.02/year, CVR = 90%, N = 214)

Parameter

Value

Standard error

r1

4.17

4.28

r2

0.30

0.63

r3

0.34

0.29

Diameter Growth submodel for Trees

Pinus nigra, P. sylvestris, P. uncinata

$$ \begin{array}{*{20}{c}} {DINC5 = 0.1 \cdot a1 + \frac{{a2}}{{1 - a3 \cdot Log\left( {HdomINC5} \right)}}} \\ { \cdot \left( {1 - a4 \cdot {e^{{ - a5 \cdot NB{A^{{ - a6}}}}}}} \right)} \\ { \cdot \left( {1 + a7 \cdot ICS} \right)} \\ { \cdot min\left[ {1.025,\left( {1 + a8 \cdot \left( {Hdom50 - 15} \right)} \right)} \right]} \\ \end{array} $$
(2a)

(R 2 = 0.88, mean = 0.36 cm/year, CVR = 22%, N = 654)

Parameter

Value

Standard error

a1

−45.98

11.68

a2

64.10

12.46

a3

0.0212

0.0093

a4

0.401

0.060

a5

19.72

6.42

a6

1.23

0.13

a7

0.232

0.054

a8

0.015

0.0033

Equation 2a was fitted only for P. nigra. As P. sylvestris and P. uncinata have many traits in common with P. nigra, we used a correspondence (set up using D2; not presented) between diameter increment of each three species, as depending on HdomINC5, NBA, and ICS.

Abies alba

$$ \begin{array}{*{20}{c}} {DINC5 = 100 \cdot b1 \cdot 1 /\left( {1 - b2 \cdot Log\left( {H/Age} \right)} \right) \cdot Ag{e^{{ - b3}}}} \\ { \cdot 1/\left( {1 - b4 \cdot {e^{{ - b5 \cdot NBA}}}} \right)} \\ { \cdot \left( {1 - {e^{{ - b6 \cdot ICS}}}} \right)} \\ \end{array} $$
(2b)

N.B. : In this case, ICS is computed using dbh under bark, and DINC5 is the increment under bark. The switch between under bark and over bark dbh values is achieved using bark thickness relationships (established using D2, not presented). NBA is over bark.

(R 2 = 0.61, mean = 0.38 cm/year, CVR = 32%, N = 644)

Parameter

Value

Standard error

b1

0.122

0.061

b2

4.09

2.56

b3

0.151

0.053

b4

0.786

0.052

b5

0.014

0.007

b6

3.55

0.55

Fagus sylvatica

$$ \begin{array}{*{20}{c}} {DINC5 = 100 \cdot c1 \cdot {{\left( {1 - {e^{{ - c2 \cdot H/Age}}}} \right)}^{{c3}}} \cdot Ag{e^{{c4}}}} \\ { \cdot 1/\left( {1 + {e^{{c5 \cdot NBA}}}} \right)} \\ { \cdot \left( {1 - {e^{{ - c6 \cdot ICS}}}} \right)} \\ \end{array} $$
(2c)

N.B.: underbark and overbark values: see Eq. 2b

(R 2 = 0.69, mean = 0.25 cm/year, CVR = 29%, N = 686)

Parameter

Value

Standard error

c1

1.28

0.18

c2

0.1

fixed

c3

0.86

0.05

c4

0.056

0.053

c5

0.020

0.002

c6

0.84

0.07

Diameter Growth submodel Seedlings and saplings

$$ \begin{array}{*{20}{c}} {DINC5 = 5 \cdot 0.1 \cdot d1 \cdot {e^{{ - {e^{{d2 - d3 \cdot Dlag}}}}}}} \\ { \cdot {e^{{ - \left( {d4 - {{H} \left/ {{H\max }} \right.}} \right)}}}^2} \\ { \cdot 1/[1 + d5 \cdot ((SDLp + 1)/100)]} \\ { \cdot 1/[1 + d6 \cdot {{((SDLfa + 1)/100)}^{{d7}}}]} \\ { \cdot 1/[1 + d8 \cdot {{((NBA + 0.01)/60)}^{{d9}}}]} \\ \end{array} $$
(3)

When parameter d4 is non-significant (“NS”), the modifier \( {e^{{ - \left( {d4 - {{H} \left/ {{H\max }} \right.}} \right)}}}^2 \)is not included (i.e. it is replaced by 1).

Abies alba

(R 2 = 0.83, mean = 0.27 cm/year, CVR = 40%, N = 864)

Parameter

Value

Standard error

d1

12.99

0.80

d2

0.1

fixed

d3

1.24

0.19

d4

-

NS

d5

−0.071

0.024

d6

0.72

0.08

d7

2.08

0.15

d8

1.38

0.16

d9

2

fixed

N.B.: d5 < 0 : i.e. SDLp is favorable to diameter growth of Abies alba seedlings/saplings.

Fagus sylvatica

(R 2 = 0.51, mean = 0.25 cm/year, CVR = 47%, N = 1,065)

Parameter

Value

Standard error

d1

6.34

0.58

d2

0.25

0.07

d3

5.01

1.10

d4

-

NS

d5

0.048

0.029

d6

0.51

0.067

d7

1.59

0.20

d8

0.46

0.12

d9

2

fixed

Pinus nigra

(R 2 = 0.45, mean = 0.46 cm/year, CVR = 35%, N = 448)

Parameter

Value

Standard error

d1

8.57

0.62

d2

−0.056

0.333

d3

14.28

4.97

d4

0.19

0.05

d5

0.40

0.07

d6

1.47

0.53

d7

1.65

0.44

d8

13.59

6.65

d9

8

fixed

D3 contains too few growth samples or site/stand conditions for Pinus sylvestris or P. uncinata; for simulation, we used the relationship fitted for Pinus nigra.

Height–Diameter submodel for Trees

$$ H = Hdom \cdot \frac{{(1 - {e^{{ - s \cdot DBH}}})}}{{(1 - {e^{{ - s \cdot Ddom}}})}} $$
(4)

With \( s = s0 + s1 \cdot {\rm Re} lSpcgMod \) (see § 2.4.4)

Abies alba

(R 2 = 0.97, mean = 17.34 m, CVR = 12%, N = 5,689)

Parameter

Value

Standard error

s1

0.000257

0.000024

s0

0.0130

0.00214

Fagus sylvatica

(R 2 = 0.92, mean = 12.55 m, CVR = 14%, N = 16,081)

s1

0.000535

0.000016

s0

0.0300

0.00161

Pinus nigra

(R 2 = 0.97, mean = 12.54 m, CVR = 11%, N = 9,846)

s1

0.000131

0.000015

s0

0.0659

0.00175

Pinus sylvestris

(R 2 = 0.94, mean = 10.28 m, CVR = 14%, N = 24,397)

s1

0.000342

9.175E-6

s0

0.0276

0.00129

Pinus uncinata

(R 2 = 0.93, mean = 9.76 m, CVR = 15%, N = 3,696)

s1

0.000089

0.000021

s0

0.0505

0.00304

Height Growth submodel for Seedlings and saplings (see also Fig. 2)

$$ \begin{array}{*{20}{c}} {HINC5/{\text{HdomINC5}} = } \hfill \\ {{1/[1} + {\text{t1}} \cdot {\text{Hla}}{{\text{g}}^{\text{t2}}} \cdot {\text{((1 - H / Hmax}}{{)}^{\text{t3}}} + {0}{.01)]}} \hfill \\ { \cdot {1/[1} + {\text{t4}} \cdot {{{\text{( (SDLfa}} + {1) /100)}}^{\text{t5}}}{]}} \hfill \\ { \cdot {1/[1} + {\text{t6}} \cdot {\text{(NBA}} + {0}{.1) /50}{{)}^{\text{t7}}}{]}} \hfill \\ \end{array} $$
(5)

When parameter t3 is non-significant (“NS”), the term \( {\text{ ((1 - H / Hmax)}}{{ }^{\text{t3}}}{ } + { 0}{.01)} \) is not included (i.e. it is replaced by 1).

Abies alba

(R 2 = 0.67, mean = 0.38 m/m, CVR = 65%, N = 1,173)

Parameter

Value

Standard error

t1

34.1

3.5

t2

8

fixed

t3

-

NS

t4

0.29

0.06

t5

2.18

0.30

t6

0.12

0.05

t7

0.50

0.39

Fagus sylvatica

(R 2 = 0.30, mean = 0.75 m/m, CVR = 56%, N = 1,161)

Parameter

Value

Standard error

t1

6.98

1.39

t2

2

fixed

t3

5.32

1.23

t4

0.15

0.05

t5

1.67

0.35

t6

0.009

0.053

t7

2

fixed

Pinus nigra, Pinus sylvestris and P. uncinata

(R 2 = 0.65, mean = 0.62 m/m, CVR = 33%, N = 760)

Parameter

Value

Standard error

t1

6.69

1.11

t2

2.43

0.30

t3

14.81

1.57

t4

1.39

0.46

t5

2.39

0.53

t6

5.06

2.56

t7

10.48

2.80

For Pinus sylvestris or P. uncinata, D3 contains too few individuals with height growth measurements and the corresponding range of site/stand conditions is quite narrow; for simulation, we used the relationship fitted for P. nigra.

Mortality submodels

Trees

$$ {\text{probMort5}} = {\text{(m1}} + {\text{m2}} \cdot N{\text{BA)}} \cdot {{\text{e}}^{{{\text{(m3}} + {\text{m4}} \cdot N{\text{BA)}} \cdot {\text{DBH/Ddom}}}}} $$
(6)

DBH and Ddom are under bark values. N is the number of combinations of classes of NBA (8 classes ranging between 10 and 60 m2/ha) by classes of DBH/Ddom (7 ranging between 0.3 and 1.1). The mean is the mortality rate for 5 years.

Abies alba

(R 2 = 0.32, mean = 0.0186, CVR = 93%, N = 48)

Parameter

Value

Standard error

m1

−0.0088

0.035

m2

0.0022

0.0012

m3

−2.09

1.25

m4

0.0021

0.0178

Fagus sylvatica

(R 2 = 0.40, mean = 0.0037, CVR = 72%, N = 56)

m1

−0.0014

0.0016

m2

0.00026

0.00008

m3

−0.33

0.70

m4

−0.011

0.015

Pinus nigra

(R 2 = 0.55, mean = 0.0060, CVR = 65%, N = 49)

m1

0.0028

0.0089

m2

0.00086

0.00033

m3

−2.48

1.08

m4

−0.0012

0.0257

Pinus sylvestris

(R 2 = 0.76, mean = 0.0186, CVR = 22%, N = 42)

m1

0.0066

0.0064

m2

0.0013

0.0003

m3

−0.48

0.32

m4

−0.028

0.009

Pinus uncinata

(R 2 = 0.14, mean = 0.0195, CVR = 54%, N = 53)

m1

0.00051

0.00523

m2

0.00082

0.00026

m3

0.92

0.53

m4

−0.037

0.014

Seedlings/Saplings (see also Fig. 3)

$$ probMort5 = 5 \cdot \left[ {1 - {e^{{ - m0 \cdot NB{A^2} \cdot \left[ {1/min(l,H/H\max ) - 1} \right]}}}} \right] $$
(7)

N is the number of combinations of classes of NBA (from 10 to 60 with classes of width 10 m2/ha) by classes of H/Hmax (from 0.1 to 1.0 with classes of width 0.1). The mean is the mortality rate for 5 years.

Abies alba

(R 2 = 0.85, mean = 0. 0175, CVR = 115%, N = 27)

Parameter

Value

Standard error

m0

2.803E-7

8.569E-8

Fagus sylvatica

(R 2 = 0.30, mean = 0.0095, CVR = 210%, N = 29)

m0

4.607E-7

1.147E-7

Pinus nigra

(R 2 = 0.56, mean = 0. 0395, CVR = 122%, N = 25)

m0

1.408E-6

3.186E-7

Pinus sylvestris

(R 2 = 0.94, mean = 0. 0295, CVR = 51%, N = 11)

m0

1.007E-6

3.027E-7

Dataset D3 contains too few samples for Pinus uncinata; for simulation, we used the relationship fitted for Pinus nigra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyfus, P. Joint simulation of stand dynamics and landscape evolution using a tree-level model for mixed uneven-aged forests. Annals of Forest Science 69, 283–303 (2012). https://doi.org/10.1007/s13595-011-0163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-011-0163-2

Keywords

Navigation