Skip to main content

Does past emergence of epicormic shoots control current composition of epicormic types?

Abstract

• Context

While past studies on epicormics in oak (Quercus sp.) have focused on the effect of thinning on epicormic shoots emergence, the consequences of this emergence on the epicormic ontogeny and future wood quality have rarely been asked.

• Aims

This paper aims to quantifying the relationship between past emergence and current composition of epicormics.

• Methods

Three thinning experiments with Quercus petraea (Matt.) Liebl. or Quercus robur L. were investigated. Epicormic shoots were regularly tallied and epicormic composition recorded recently. Some logs were scanned using X-ray computed tomography (CT).

• Results

Past tallies on both species were mainly and positively related to the current frequency of bud clusters and burls. This was due to the production of buds by epicormic shoots for only certain trees, as evidenced by CT, and mainly to correlated numbers of current epicormic shoots, bud clusters and burls, all originating from a past common set of buds and bud clusters.

• Conclusion

The important tree effect on both species suggests that oak silviculture can be optimized by the early selection of crop trees with few epicormics and/or eventually a first and heavy thinning that helps in spotting remaining individuals being prone to the development of multiple epicormics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Barthélémy D, Caraglio Y (1997) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  Google Scholar 

  2. Bell AD (1991) Plant form. An illustrated guide to flowering plant morphology. Oxford University Press, Oxford, p 341

    Google Scholar 

  3. DREAL Champagne-Ardenne (2010) Bulletin de situation hydrologique. Région Champagne-Ardenne. Bilan du mois de décembre 2010. p22

  4. Colin F, Robert N, Druelle JL, Fontaine F (2008) Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. Ann For Sci 65:508–517

    Article  Google Scholar 

  5. Colin F, Mechergui R, Dhôte JF, Fontaine F (2010a) Epicormic ontogeny on Quercus petraea trunks and thinning effects quantified with the epicormic composition. Ann For Sci 67:813

    Article  Google Scholar 

  6. Colin F, Ducousso A, Fontaine F (2010b) Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits. Ann For Sci 67:312–323

    Article  Google Scholar 

  7. Colin F, Mothe F, Freyburger C, Morisset JB, Leban JM, Fontaine F (2010c) Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases preliminary results and perspectives. Trees. Struct Funct 24:953–967

    Article  Google Scholar 

  8. Courraud R (1987) Les gourmands sur les chênes “rouvre”et “pédonculé”. Forêt-Entrep 45:20–49

    Google Scholar 

  9. Dhôte JF, Hatsch E, Rittié D (2000) Forme de la tige, tarifs de cubage et ventilation de la production en volume chez le Chêne sessile. Ann For Sci 57:121–142

    Article  Google Scholar 

  10. Fontaine F. (1999) Les bourgeons épicormiques chez le chêne sessile (Quercus petraea): établissement des bases en vue de l’évaluation dynamique d’un potentiel épicormique. Thèse de doctorat, Université de Reims Champagne-Ardenne, volume I, 101 p, volume II, 94 p

  11. Fontaine F, Druelle JL, Clément C, Burrus M, Audran JC (1998) Ontogeny of proventitious epicormic buds in Quercus petraea. I. In the 5 years following initiation. Tree Struct Funct 13:54–62

    Google Scholar 

  12. Fontaine F, Kiefer E, Clément C, Burrus M, Druelle JL (1999) Ontogeny of proventitious epicormic buds in Quercus petraea. II. From 6 to 40 years of the tree’s life. Tree Struct Funct 14:83–90

    Google Scholar 

  13. Fontaine F, Colin F, Jarret P, Druelle JL (2001) Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann For Sci 58:583–592

    Article  Google Scholar 

  14. Fontaine F, Mothe F, Colin F, Duplat P (2004) Structural relationships between the epicormic formations on trunk surface and defects induced in the wood of Quercus petraea. Tree Struct Funct 18:295–306

    Article  Google Scholar 

  15. Fournier M, Churin JL, Fontaine F, Colin F, Fontaine F (2003) Bilan croissance-qualité d’un essai de mycorhization contrôlée sur chêne pédonculé, 16 ans après plantation. Rev For Fr LV 1:25–33

    Google Scholar 

  16. Hahne B (1926) The origin of secondary dormant buds in deciduous fruit trees. Univ Calif Publ Bot 13:125–126

    Google Scholar 

  17. Hasenauer H, Monserud RA (1996) A crown ratio model for Austrian forests. Forest Ecol Manag 84:49–60

    Article  Google Scholar 

  18. Jarret P (2004) Chênaie atlantique: guide des sylvicultures. ONF (ed). Lavoisier, Paris, 335p

  19. Lemaire J (1992) Sylviculture du chêne pédonculé de qualité: intensités d’éclaircie en futaie régulière. Forêt-Entrepr 146:53–59

    Google Scholar 

  20. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Champman & Hall, London

    Google Scholar 

  21. Morisset JB, Mothe F, Bock J, Bréda N, Colin F (2011) Epicormic ontogeny in Quercus petraea Liebl. constraints the highly plausible control of epicormic sprouting by water and carbohydrates. Ann Bot (in press)

  22. Nutto L (1999) Neue Perspectiven für die Begründung und Pflege von jungen Eichenbeständen. Ergebnisse einer Untersuchung zur Kronenentwicklung, Astreinigung und Dickenwachstum junger Stiel- und Traubeneichen in Europa (Quercus robur L. und Quercus petraea (Matt.) Liebl.). Schriftenreihe Freiburger Forstliche Forschung; Bd. 5. Forstwissenschaftliche Fakultät der Universität Freiburg und Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg. 190 S

  23. Pardé (1978) Normes de sylviculture pour les forêts de chêne rouvre. Revue Forestière Française 30:11–17

    Article  Google Scholar 

  24. Rasband, W.S. (1997–2009) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA. Available at http://rsb.info.nih.gov/ij/.

  25. Sardin T (2008) Chênaies continentales: guide des sylvicultures. Office National des forêts. 455p

  26. Spiecker H (1991) Zur Steuerung des Dickenwachstums und der Astreinigung von Trauben-und Stieleichen (Quercus petraea (Matt.) Liebl. und Quercus robur L.). Schriftenreihe der Landesforstverwaltung, Band 72, p. 150

Download references

Acknowledgements

We wish to give our warm thanks to Frédérique Vautier who was responsible for the management of the LO experiment; Yves Bresson and François Conrard who managed and measured the three ONF experiments regularly; and Jean-Louis Druelle, professor at Reims University, who helped to describe the epicormic composition in 2007 and 2008.

Funding

The French National Forest Service (ONF) supported this study financially through the ModelFor contract together with INRA who provided JB Morisset’s Ph.D. grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francis Colin.

Additional information

Contribution of the co-authors

Francis Colin, Didier François: field measurements. Jean-Baptiste Morisset, Frédéric Mothe: interpretation of scan images. Jean-Baptiste Morisset, Francis Colin: running the data analysis. Jean-Baptiste Morisset, Francis Colin, Frédéric Mothe: writing the paper. Francis Colin, Bruno Chopard: supervision of the work and coordinating the project.

Handling Editor: Barry Alan Gardiner

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morisset, JB., Mothe, F., Chopard, B. et al. Does past emergence of epicormic shoots control current composition of epicormic types?. Annals of Forest Science 69, 139–152 (2012). https://doi.org/10.1007/s13595-011-0148-1

Download citation

Keywords

  • Sprouts
  • Quercus petraea
  • Quercus robur
  • Secondary buds
  • Bud clusters