Skip to main content

Stochastic or deterministic single-tree models: is there any difference in growth predictions?



Deterministic single-tree models are commonly used in forestry. However, there is evidence that stochastic events may interact with the nonlinear mechanisms that underlie forest growth. As a consequence, stochastic and deterministic simulations could yield different results for the same single-tree model and the same initial conditions. This hypothesis was tested in this study.

Material and methods

We used a single-tree growth model that can be implemented either stochastically or deterministically. Two data sets of 186 and 342 plots each were used for the comparisons. For each plot, the simulations were run on a 100-year period using 10-year growth steps. Three different response variables were compared.


The results showed that there were differences between the predictions from stochastic and deterministic simulations for some response variables and that randomness alone could not explain these differences. In the case of deterministic simulations, the fact that predictions are reinserted into the model at each growth step is a concern. These predictions are actually random variables and their transformations may result in biased quantities. Forest growth modellers should be aware that deterministic simulations may not correspond to the mathematical expectation of the natural dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Cunningham RB, Lindenmayer DB (2005) Modeling count data of rare species: some statistical issues. Ecology 86:1135–1142

    Article  Google Scholar 

  2. Duan N (1983) Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 78:605–610

    Article  Google Scholar 

  3. Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman & Hall, Boca Raton

    Google Scholar 

  4. Ek A.R. (1980) A preliminary trial of alternative methods for treating mortality in the multipurpose forest projection system (MFPS) model. Univ. Minn., Coll. For., Dep. For. Resour., Staff Pap. Ser. No. 8.

  5. Flewelling JW, Pienaar LV (1981) Multiplicative regression with lognormal errors. For Sci 27:281–289

    Google Scholar 

  6. Fortin M., and Langevin L. (2010) ARTEMIS-2009: un modèle de croissance basé sur une approche par tiges individuelles pour les forêts du Québec. Gouvernement du Québec. Ministère des Ressources naturelles et de la Faune. Direction de la recherche forestière. Mémoire de recherche n°156. 48 p.

  7. Fortin M, DeBlois J, Bernier S, Blais G (2007) Mise au point de tarif de cubage général pour les forêts québécoises: une approche pour mieux évaluer l’incertitude associée aux prévisions. For Chron 83:754–765

    Google Scholar 

  8. Fortin M, DeBlois J, Bédard S, Meunier S (2008) Modeling mortality probabilities of individual trees for different species groups in hardwood stands under uneven-aged management in southern Québec. Ann For Sci 65:205

    Article  Google Scholar 

  9. Fortin M., Bernier S., Saucier J.-P., and Labbé F. (2009a) Une relation hauteur-diamètre tenant compte de l’influence de la station et du climat pour 20 espèces commerciales du Québec. Gouvernement du Québec. Ministère des Ressources naturelles et de la Faune. Direction de la recherche forestière. Mémoire de recherche n°153. 22 p.

  10. Fortin M, Bédard S, DeBlois J, Meunier S (2009b) Assessing and testing prediction uncertainty for single tree-based models: a case study applied to northern hardwood stands in southern Québec. Canada Ecol Modell 220:2770–2781

    Article  Google Scholar 

  11. Gertner GZ, Dzialowy PJ (1984) Effects of measurement errors on an individual tree-based growth projection system. Can J For Res 14:311–316

    Article  Google Scholar 

  12. Gregoire TG, Lin QF, Boudreau J, Nelson R (2008) Regression estimation following the square-root transformation of the response. For Sci 54:597–606

    Google Scholar 

  13. Higgins K, Hasting A, Sarvela JN, Botsford LW (1997) Stochastic dynamics and deterministic skeletons: population behaviour of Dungeness crab. Science 276:1431–1435

    Article  CAS  Google Scholar 

  14. Kangas AS (1999) Methods for assessing uncertainty of growth and yield predictions. Can J For Res 29:1357–1364

    Article  Google Scholar 

  15. Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., and Schabenberger O., 2006. SAS system for mixed models. 2nd edition. SAS Institute Inc., Cary. 814 p

  16. Mäkelä A, Vanninen P, Ikonen V-P (1997) An application of process-based modelling to the development of branchiness in Scots pine. Silva Fennica 31:369–380

    Google Scholar 

  17. McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, linear, and mixed models. Second edition. Wiley, Hoboken, p 384

    Google Scholar 

  18. McRoberts RE, Hahn JT, Hefty GJ, Van Cleve JR (1994) Variation in forest inventory field measurement. Can J For Res 24:1766–1770

    Article  Google Scholar 

  19. Mowrer HT (1991) Estimating components of propagated variance in growth simulation model projections. Can J For Res 21:379–386

    Article  Google Scholar 

  20. Mowrer HT, Frayer WE (1986) Variance propagation in growth and yield projections. Can J For Res 16:1196–1200

    Article  Google Scholar 

  21. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York, 528 p

    Book  Google Scholar 

  22. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21

    Article  Google Scholar 

  23. Saucier J.-P., Bergeron J.-F., Grondin P., and Robitaille A. (1998) Les régions écologiques du Québec méridional: un des éléments du système hiérarchique de classification écologique du territoire mis au point par le ministère des Ressources naturelles. L’Aubelle, février-mars 1998, 8 p.

  24. Stage A.R. (1973) Prognosis model for stand development. USDA For. Serv. Res. Pap. INT-137. 32 p.

  25. Solomon DS, Hosmer RA, Hayslett HT Jr (1986) A two-stage matrix model for predicting growth of forest stands in the Northeast. Can J For Res 16:521–528

    Article  Google Scholar 

  26. Vanclay JK (1991) Compatible deterministic and stochastic predictions by probabilistic modeling of individual trees. For Sci 37:1656–1663

    Google Scholar 

  27. Vanclay JK (1994) Modelling forest growth and yield, applications to mixed tropical forests. CAB International, Wallingford, 312 p

    Google Scholar 

  28. Weber LA, Ek AR, Droessler TD (1986) Comparison between stochastic and deterministic mortality estimation in an individual tree based stand growth model. Can J For Res 16:1139–1141

    Article  Google Scholar 

  29. Zhou M, Buongiorno J (2004) Nonlinearity and noise interaction in a model of forest growth. Ecol Modell 180:291–304

    Article  Google Scholar 

Download references


The authors are thankful to Mrs. Isabelle Auger of the Natural Resources and Wildlife Ministry of Quebec-Forest Research Branch (Ministère des Ressources Naturelles et de la Faune du Québec-Direction de la Recherche Forestière) and to two anonymous reviewers for their helpful comments on a preliminary version of this paper.

Author information



Corresponding author

Correspondence to Mathieu Fortin.

Additional information

Handling Editor: Daniel Auclair



Random vector drawn from a multivariate normal distribution

Let us consider the vector ε as a random vector that follows a multivariate normal distribution with mean μ and covariance V, i.e., ɛ∼MVN(μ, V). The Cholesky decomposition provides the lower triangular matrix A that satisfies the condition V = AA T. If y is a vector of independent standard normal random variates (i.e., all independently and normally distributed with mean 0 and variance 1), the sum μ + Ay yields a random vector from the desired multivariate distribution.

For example, let us consider the bivariate case where:

$$ {\mathbf{\mu }} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ \end{array} } \right]\;{\text{and}}\;{\mathbf{V}} = \left[ {\begin{array}{*{20}{c}} {0.700} & {0.500} \\ {0.500} & {2.000} \\ \end{array} } \right] $$

The Cholesky decomposition of V yields:

$$ {\mathbf{A}} = \left[ {\begin{array}{*{20}{c}} {0.837} & {0.000} \\ {0.598} & {1.282} \\ \end{array} } \right] $$

Now, let us draw a random vector of independent standard normal variates where:

$$ {\mathbf{y}} = {(0.246,{ } - {1}{.976)}^{\text{T}}} $$

The sum of μ + Ay, i.e.,

$$ \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ \end{array} } \right] + \left[ {\begin{array}{*{20}{c}} {0.837} & {0.000} \\ {0.598} & {1.282} \\ \end{array} } \right] \times \left[ {\begin{array}{*{20}{c}} {0.246} \\ { - 1.976} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}{c}} {0.206} \\ { - 2.386} \\ \end{array} } \right] $$

yields a vector that follows a MVN distribution with mean μ and covariance V.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fortin, M., Langevin, L. Stochastic or deterministic single-tree models: is there any difference in growth predictions?. Annals of Forest Science 69, 271–282 (2012).

Download citation


  • Growth modelling
  • Monte Carlo simulation
  • Bias
  • Single-tree models
  • Stochastic
  • Deterministic