Annals of Forest Science

, Volume 68, Issue 5, pp 959–974 | Cite as

The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges

  • Mathieu DassotEmail author
  • Thiéry Constant
  • Meriem Fournier
Review Paper


• Introduction

The use of terrestrial LiDAR (light detection and ranging) scanners in forest environments is being studied extensively at present due to the high potential of this technology to acquire three-dimensional data on standing trees rapidly and accurately. This article aims to establish the state-of-the-art in this emerging area.

• Objectives

Terrestrial LiDAR has been applied to forest inventory measurements (plot cartography, species recognition, diameter at breast height, tree height, stem density, basal area and plot-level wood volume estimates) and canopy characterisation (virtual projections, gap fraction and three-dimensional foliage distribution). These techniques have been extended to stand value and wood quality assessment. Terrestrial LiDAR also provides new support for ecological applications such as the assessment of the physical properties of leaves, transpiration processes and microhabitat diversity.

• Results

Since 2003, both the capabilities of the devices and data processing technology have improved significantly, with encouraging results. Nevertheless, measurement patterns and device specifications must be selected carefully according to the objectives of the study. Moreover, automated and reliable programmes are still required to process data to make these methodologies applicable specifically to the forest sciences and to fill the gap between time-consuming manual methods and wide-scale remote sensing such as airborne LiDAR scanning.


Terrestrial LiDAR scanner Point cloud reconstruction Tree structure Forest management Forest ecology 



This work was supported by the French National Research Agency (ANR) through the EMERGE project (ANR BIOENERGIE 2008 BIOE-003), which aims at establishing reliable and generic distribution models of tree biomass. It is managed by Christine Deleuze. The authors also thank referees for their useful and constructive comments.


  1. Allen R.B., 1992. RECCE, an inventory method for describing New Zealand vegetation. Forest Research Institute Bulletin No. 176, Protection Forestry Division, Forestry Research Institute, Christchurch, New Zealand. Google Scholar
  2. Antonarakis A.S., Richards K.S., Brasington J., and Bithell M., 2009. Leafless roughness of complex tree morphology using terrestrial lidar, Water Resour. Res. 45:W10401. doi: 10.1029/2008WR007666 CrossRefGoogle Scholar
  3. Aschoff T., and Spiecker H., 2004. Algorithms for the automatic detection of trees in laser scanner data. ISPRS 36:66–70Google Scholar
  4. Aschoff T., Spiecker H., and Holderied M.W., 2007. Terrestrische Laserscanner und akustische Ortungssysteme: Jagdlebensraeume von Fledermaeusen inWaeldern. AFZ Der Wald 62:172–175Google Scholar
  5. Barbacci A., Constant T., and Nepveu G., 2009. Theoretical and experimental study of a mechanical model describing the trunk behaviour of mature beech trees (Fagus sylvatica L.) under the static loading of the crown. Trees 23:1137–1147CrossRefGoogle Scholar
  6. Bélouard T., Vidal C., Hervé J.C., and Robert N., 2005. The new French forest inventory, a systematic and annual sampling. De l'observation des écosystèmes forestiers à l'information sur la forêt, 2nd-3 rd February 2005, Paris. Available online at Last accessed 28 January 2011.
  7. Bienert A., Maas H.G., and Scheller S., 2006a. Analysis of the information content of terrestrial laser scanner point cloud for the automatic determination of forest inventory parameters. Workshop on 3D Remote Sensing in Forestry, 14th-15th Feb 2006. Vienna. Available online at Last accessed 28 January 2011.
  8. Bienert A., Scheller S., Keane E., Mullooly G., and Mohan F., 2006b. Application of terrestrial laser scanners for the determination of forest inventory parameters. Image Engineering and Vision Metrology. ISPRS Commission V Symposium, WG 3, Dresden, 25–27 September 2006 36, Part 5. Available online at Last accessed 28 January 2011.
  9. Bienert A., Scheller S., Keane E., Mohan F., and Nugent C., 2007. Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds. Laser scanning 2007 and Silvilaser 2007. ISPRS Commission III Workshop 36, Part 3, Espoo, Finland. Sept. 12–14, 2007. Available online at Last accessed on 28 January 2011.
  10. Binney J. and Sukhatme G.S., 2009. 3D tree reconstruction from laser range data. In: Proc. of the 2009 IEEE international conference on Robotics and Automation. Available online at Last accessed on 28 January 2011.
  11. Bréda N.J.J., 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417. doi: 10.1093/jxb/erg263 PubMedCrossRefGoogle Scholar
  12. Brüchert F., and Gardiner B., 2006 The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am J Bot 93:1512–1521PubMedCrossRefGoogle Scholar
  13. Chambelland J.C., Dassot M., Adam B., Donès N., Balandier B., Marquier A., Saudreau M., Sonohat G., and Sinoquet H., 2008. A double-digitizing method for building 3D virtual trees with non-planar leaves: application to the morphology and light capture properties of young beech trees (Fagus sylvatica). Funct Plant Biol 35:1059–1069CrossRefGoogle Scholar
  14. Chasmer L., Hopkinson C., and Treitz P., 2006. Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar. Can J Remote Sens 32:116–125CrossRefGoogle Scholar
  15. Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G., and Zanne A.E., 2009. Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x PubMedCrossRefGoogle Scholar
  16. Cheng Z.L., Zhang X.P., and Chen B.Q., 2007. Simple reconstruction of tree branches from a single range image. J Comput Sci Technol 22:846–858CrossRefGoogle Scholar
  17. Clawges R., Vierling L., Calhoon M., and Toomey M., 2007. Use of a ground-based LIDAR for estimation of biophysical properties of western larch (Larix occidentalis). Int J Remote Sens 28:1–14CrossRefGoogle Scholar
  18. Côté J.F., Widlowski J.L., Fournier R.A., and Verstraete M.M., 2009. The structural and radiative consistency of three-dimensional tree reconstruction from terrestrial LIDAR. Remote Sens Environ 113:1067–1081CrossRefGoogle Scholar
  19. Danson F.M., Hetherington D., Morsdorf F., Koetz B., and Allgöwer B. 2007a. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci Remote Sens Lett 4:157–160CrossRefGoogle Scholar
  20. Danson F.M., Giacosa C., and Armitage R.P. 2007b. Two-dimensional forest canopy architecture from terrestrial laser scanning. ISPRS 36:1682–1777Google Scholar
  21. Danson F.M., Armitage R.P., Bandugula V., Ramirez F.A., Tate N.J., Tansey K.J., and Tegzes T., 2008. Terrestrial laser scanners to measure forest canopy gap fraction. SilviLaser 2008, 17th-19th September 2008. Edinburgh, UK. Available online at Laser scanning & Laser Cameras/Danson.pdf. Last accessed 28 January 2011.
  22. FARO, 2010. Available online at Last accessed 28 January 2011.
  23. Fleck, S., Obertreiber, N., Schmidt, I., Brauns, M., Jungkunst, H.F., and Leuschner, C., 2007. Terrestrial LIDAR measurements for analysis canopy structure in an old-growth forest. ISPRS36: Part 3 / W52.Google Scholar
  24. Zoller + Fröhlich, 2010. Available online at Last accessed on 28 January 2011.
  25. Gorte B., and Winterhalder D., 2004. Reconstruction of laser-scanned trees using filter operations in the 3D-raster domain. ISPRS 36:39–44Google Scholar
  26. Haala N., Reulke R., Thies M. and Aschoff T., 2004. Combination of terrestrial laser scanning with high resolution panoramic images for investigations in forest applications and tree species recognition. ISPRS 34: Part 5/W16.Google Scholar
  27. Henning J.G., 2005. Modeling forest canopy distribution from ground-based laser scanner data. M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 171 p.Google Scholar
  28. Henning J.G., and Radtke P.J., 2006a. Detailed stem measurements of standing trees from ground-based scanning lidar. For Sci 52:67–80Google Scholar
  29. Henning J.G., and Radtke P.J., 2006b. Ground-based laser imaging for assessing three-dimensional forest canopy structure. Photogramm Eng Remote Sens 72:1349–1358Google Scholar
  30. Hopkinson C., Chasmer L., Young-Pow C., and Treitz P. 2004. Assessing forest metrics with a ground-based scanning lidar. Can J For Res 34:573–583CrossRefGoogle Scholar
  31. Hosoi F., and Omasa K., 2006. Voxel-based 3-D modelling of individual trees for estimating leaf area density using high-resolution portable scanning lidar. IEEE Trans Geosci Remote Sens 44:3610–3618. doi: 10.1109/TGRS.2006.881743 CrossRefGoogle Scholar
  32. Hosoi F., and Omasa K., 2007. Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable LIDAR imaging. J Exp Bot 58:3463–3473PubMedCrossRefGoogle Scholar
  33. Hosoi F., and Omasa K., 2009a. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable LiDAR imaging. ISPRS 64:151–158. doi: 10.1016/j.isprsjprs.2008.09.003 CrossRefGoogle Scholar
  34. Hosoi F., and Omasa K., 2009b. Estimating vertical leaf area density profile of tree canopies using three-dimensional portable LiDAR imaging. In Proceedings of the ISPRS workshop Laser-scanning 09, Paris, France. pp. 152–157. Available online at Last accessed 28 January 2011.
  35. Hosoi F., and Omasa K. 2009c. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LiDAR imaging. Funct Plant Biol 36:998–1005CrossRefGoogle Scholar
  36. Huang P., and Pretzsch H. 2010. Using terrestrial laser scanning for estimating leaf areas of individual trees in conifer forests. Trees 24:609–619CrossRefGoogle Scholar
  37. Järvelä J., 2004. Determination of flow resistance caused by non-submerged woody vegetation. Int J River Basin Manage 2:61–70CrossRefGoogle Scholar
  38. Johansson T., 1985. Estimating canopy density by the vertical tube method. For Ecol Manage 11:139–144CrossRefGoogle Scholar
  39. Jupp D.L.B., Culvenor D.S., Lovell J.L., Newnham G.J., Strahler A.H., and Woodcock C.E., 2009. Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna®. Tree Physiol 29:171–181PubMedCrossRefGoogle Scholar
  40. Keane E., 2007. The potential of terrestrial laser scanning technology in pre-harvest timber measurement operations. Harvesting/Transportation 7, Coford Connects, Coford, Dublin, Ireland. 4 p.Google Scholar
  41. Kint V., Aertsen W., Wouters J. and Muys B., 2009. Stem and wood quality assessment in national forest inventories. In: Proc of the IUFRO Division 4, Extending Forest Inventory and Monitoring over Space and Time, May 2009, Quebec City.Google Scholar
  42. Koetz B., Sun G., Morsdorf F., Ranson K.J., Kneubühler M., Itten K., and Allgöwer B., 2007. Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106:449–459CrossRefGoogle Scholar
  43. Kundu M.K., and Pal S.K., 1990. Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measures. Pattern Recognit Lett 11:811–829CrossRefGoogle Scholar
  44. RIEGL Laser Measurement Systems (2010) Available online at Last accessed 28 January 2011.
  45. Lefsky M., and McHale M., 2008. Volumes estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens 2:023521CrossRefGoogle Scholar
  46. Lemmens M., 2009. Terrestrial laser scanners. GIM International. 8 (August 2009): 62–67. Available online at,_August.html. Last accessed 28 January 2011.
  47. Loudermilk E.L., Hiers J.H., O'Brien J.J., Mitchell R.J., Singhania A., Fernandez J.C., Cropper W.P., and Slatton K.C. 2009. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. Int J Wildland Fire 18:676–685CrossRefGoogle Scholar
  48. Maas H.G., Bienert A., Scheller S., and Keane E., 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593CrossRefGoogle Scholar
  49. Maltamo M., Packalen P., Yu X., Eerikäinen K., Hyyppä J., and Pitkänen J., 2005. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For Ecol Manage 216:41–50CrossRefGoogle Scholar
  50. Michel P., Jenkins J., Mason N., Dickinson K.J.M., and Jamieson I.G., 2008. Assessing the ecological application of lasergrammetric techniques to measure fine-scale vegetation structure. Ecol Inform 3:309–320CrossRefGoogle Scholar
  51. Moulia B., and Fournier M., 2009. The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J Exp Bot 60:461–486PubMedCrossRefGoogle Scholar
  52. Murphy G., 2008 Determining stand value and log product yields using terrestrial LIDAR and optimal bucking: a case study. J For 106:317–324Google Scholar
  53. Optech Incorporated, 2010. ILRIS-3D and ILRIS-36D technical overview. Available online at Last accessed 28 January 2011.
  54. Pal I., 2008. Measurements of forest inventory parameters on terrestrial laser scanning data using digital geometry and topology. ISPRS 37:1682–1750Google Scholar
  55. Pfeifer N. and Briese C., 2007. Laser scanning - Principles and applications. Institute of Photogrammetry and Remote Sensing, Publication database of the Vienna University of Technology, Austria. Available online at Last accessed 28 January 2011.
  56. Pfeifer N. and Winterhalder D., 2004. Modelling of tree cross sections from terrestrial laser-scanning data with free-form curves. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. 36 (8 / W2): 76–81. Available online at Last accessed 28 January 2011.
  57. Pfeifer N., Gorte B. and Winterhalder D., 2004. Automatic reconstruction of single trees from terrestrial laser scan data. In: Proc. of the 20th ISPRS Congress, Commission 5, Istanbul, Turkey, \July 2004. Available online at reconstruction.pdf. Last accessed 28 January 2011.
  58. Reulke R., and Haala N., 2004. Tree species recognition with fuzzy texture parameters. IWCIA 2004. Lecture Notes Comput Sci 3322:607–620CrossRefGoogle Scholar
  59. Schütt C., Aschoff T., Winterhalder D., Thies M., Kretschmer U. and Spiecker H., 2004. Approaches for recognition of wood quality of standing trees based on terrestrial laser scanner data. ISPRS 36: 8/W2.Google Scholar
  60. Simonse M., Aschoff T., Spiecker H. and Thies M., 2003. Automatic determination of forest inventory parameters using terrestrial laserscanning. In: Proc. of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests, Umea, Sweden, pp. 251–257. Available online at Last accessed 28 January 2011.
  61. Strahler A.H., Jupp D.L.B., Woodcock C.E., Schaaf C.B., Yao T., Zhao F., Yang X., Lovell J., Culvenor D., Newnham G., Ni-Miester W., and Bozkin-Morris W., 2008. Retrieval of forest structure parameters using a ground-based lidar instrument (Echidna®). Can J Remote Sens 34:426–440CrossRefGoogle Scholar
  62. Tansey K., Selmes N., Anstee A., Tate N.J., and Denniss A., 2009. Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30:5195–5209CrossRefGoogle Scholar
  63. Thies M. and Spiecker H., 2004. Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. 36: 8/W2. Available online at Last accessed 28 January 2011.
  64. Thies M., Pfeifer N., Winterhalder D., and Gorte B.G.H., 2004. Three-dimensional reconstruction of stems for assessment of taper, sweep, and lean based on laser-scanning of standing trees. Scand J For Res 19:571–581CrossRefGoogle Scholar
  65. Van Der Zande D., Hoet W., Jonckheere I., Van Aardt J., and Coppin P., 2006. Influence of measurement set-up of ground based for derivation of tree structure. Agric For Meteorol 141:147–160CrossRefGoogle Scholar
  66. Van Der Zande D., Mereu S., Nadezhdina N., Cermak J., Muys B., Coppin P., and Manes F., 2009. 3D upscaling of transpiration from leaf to tree using ground-based LIDAR: application on a Mediterranean Holm oak (Quercus ilex) tree. Agric For Meteorol 149:1573–1583CrossRefGoogle Scholar
  67. Van Leeuwen M., and Nieuwenhuis M., 2010. Retrieval of forest structural parameters using LiDAR remote sensing. Eur J For Res 129:749–770Google Scholar
  68. Watt P.J., and Donoghue D.N.M., 2005. Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26:1437–1446CrossRefGoogle Scholar
  69. Wezyk P., Koziol K., Glista M. and Pierzchalski M., 2007. Terrestrial laser scanning versus traditional forest inventory: First results from the Polish forests. In: Proc. Laser scanning 2007 and Silvilaser 2007. ISPRS Commission III Workshop, Vol. 36, Part 3, Espoo, Finland, Sept. 12–14, 2007. Available online at Last accessed 28 January 2011.
  70. Xu H., Gosset N. and Chen B., 2007. Knowledge and Heuristic Based Modeling of Laser-Scanned Trees. In: Proc. of the 2007 ACM Transactions on Graphics. Available online at Last accessed 2 November 2010.

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mathieu Dassot
    • 1
    Email author
  • Thiéry Constant
    • 1
  • Meriem Fournier
    • 2
  1. 1.INRA, UMR 1092 LERFOBINRA Centre of NancyChampenouxFrance
  2. 2.UMR 1092 LERFOBAgroParisTech - ENGREFNancyFrance

Personalised recommendations