Ahmad S, Piot M, Rousseau F, Grongnet JF, Gaucheron F (2009) Physico-chemical changes in casein micelles from buffalo and cow’s milk as a function of alkalinisation. Dairy Sci Technol 89:387–403
CAS
Article
Google Scholar
Alexander M, Nieha MP, Ferrer MA, Corredig M (2011) Changes in the calcium cluster distribution of ultrafiltered and diafiltered fresh skim milk as observed by small angle neutron scattering. J Dairy Res 78:349–356
CAS
Article
Google Scholar
Anema SG, Li Y (2003) Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. J Agric Food Chem 51:1640–1646
CAS
Article
Google Scholar
Aoki T, Toyooka K, Kako Y (1985) Role of phosphate groups in the calcium sensitivity of αs2-casein. J Dairy Sci 68:1624–1629
CAS
Article
Google Scholar
Augustin MA, Clarke PT (2008) Skim milk powders with enhanced foaming and steam-frothing properties. Dairy Sci Technol 88:149–161
CAS
Article
Google Scholar
Augustin MA, Udabage P (2007) Influence of processing on functionality of milk and dairy proteins. Adv Food Nutr Res 43:1–38
Article
CAS
Google Scholar
Banach JC, Lin Z, Lamsal BP (2013) Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT - Food Sci Technol 54:397–403
CAS
Article
Google Scholar
Benzaria A, Maresca M, Taieb N, Dumay E (2013) Interaction of curcumin with phosphocasein micelles processed or not by dynamic high-pressure. Food Chem 138:2327–2337
CAS
Article
Google Scholar
Bhatt H, Cucheval A, Coker C, Patel H, Carr A, Bennett R (2014) Effect of lactosylation on plasmin-induced hydrolysis of β-casein. Int Dairy J 38:213–218
CAS
Article
Google Scholar
Bingham EW (1976) Modification of casein by phosphatases and protein kinases. J Agric Food Chem 24:1094–1099
CAS
Article
Google Scholar
Bingham EW, Farrell HM, Carroll RJ (1972) Properties of dephosphorylated αs1-casein. Precipitation by calcium ions and micelle formation. Biochemistry 11:2450–2454
CAS
Article
Google Scholar
Bönisch MP, Lauber S, Kulozik U (2004) Effect of ultra-high temperature treatment on the enzymatic cross-linking of micellar casein and sodium caseinate by transglutaminase. J Food Sci 69:398–404
Article
Google Scholar
Bouchoux A, Gésan-Guiziou G, Pérez J, Cabane B (2010) How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophys J 99:3754–3762
CAS
Article
Google Scholar
Bravo FI, Felipe X, López-Fandiño R, Molina E (2013) High-pressure treatment of milk in industrial and pilot-scale equipments: effect of the treatment conditions on the protein distribution in different milk fractions. Eur Food Res Technol 236:499–506
CAS
Article
Google Scholar
Buccheim W, Prokopeck D (1992) Die Hochdruckbehandlung: ein alternatives Verfahren zur Haltbarmachung und Bearteitung von Milch und anderen Lebensmitteln. Dtsch Milchwirtsch 43:1374–1376
Google Scholar
Cases E, Vidal V, Cuq JL (2003) Effect of α-casein deglycosylation on the acid coagulability of milk. J Food Sci 68:2406–2410
CAS
Article
Google Scholar
Casiraghi E, Lucisano M (1991) Rennet coagulation of milk retentates. Effect of the addition of sodium chloride and citrate before ultrafiltration. Milchwissenchaft 46:775–778
CAS
Google Scholar
Cassiano MM, Area JAG (2003) Dependence of the interfacial behavior of β-casein on phosphoserine residues. J Dairy Sci 86:3876–3880
CAS
Article
Google Scholar
Chaubaroux C, Vrana E, Debry C et al (2012) Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules 13:2128–2135
CAS
Article
Google Scholar
Chevalier-Lucia D, Blayo C, Gràcia-Julià A, Picart-Palmade L, Dumay E (2011) Processing of phosphocasein dispersions by dynamic high pressure: effects on the dispersion physico-chemical characteristics and the binding of α-tocopherol acetate to casein micelles. Innov Food Sci Emerg Technol 12:416–425
CAS
Article
Google Scholar
Chobert JM (2012) Milk protein tailoring to improve functional and biological properties. J Bio Sci Biotech 1:171–197
Google Scholar
Chobert JM, Bertrand-Harb C, Nicolas MG (1988) Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. J Agric Food Chem 36:883–892
CAS
Article
Google Scholar
Chobert JM, Tran V, Haertlé T (1998) How the substitution of K188 of trypsin binding site by aromatic amino acids can influence the processing of β-casein. Biochemical and biophysical research communications 246(3):847–858
Closs B, Courthaudon JL, Lorient D (1990) Effect of chemical glycosylation on the surface properties of the soluble fraction of casein. J Food Sci 55:437–439
CAS
Article
Google Scholar
Colas B, Gobin C, Lorient D (1988) Viscosity and voluminosity of caseins chemically modified by reductive alkylation with reducing sugars. J Dairy Res 55:539–546
CAS
Article
Google Scholar
Corzo-Martinez M, Moreno FJ, Villamiel M, Harte FM (2010) Characterization and improvement of rheological properties of sodium caseinate glycated with galactose, lactose and dextran. Food Hydrocoll 24:88–97
CAS
Article
Google Scholar
Courthaudon JL, Colas B, Lorient D (1989) Covalent binding of glycosyl residues to bovine casein: effects on solubility and viscosity. J Agric Food Chem 37:32–36
CAS
Article
Google Scholar
Creamer LK, Roeper J, Lohrey EH (1971) Preparation and evaluation of some acid soluble casein derivatives. N Z J Dairy Sci Technol 6:107
CAS
Google Scholar
Creamer LK, Berry GP, Mills OE (1977) A study of the dissociation of β-casein from the bovine casein micelle at low temperature. N Z J Dairy Sci Technol 12:58–66
CAS
Google Scholar
Dalgleish DG (2011) On the structural models of bovine casein micelles—review and possible improvements. Soft Matter 7:2265–2272
CAS
Article
Google Scholar
Dalgleish DG, Corredig M (2012) The structure of the casein micelle of milk and its changes during processing. Ann Rev Food Sci Technol 3:449–467
CAS
Article
Google Scholar
Dalgleish DG, Law AJR (1988) pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins. J Dairy Res 55:529–538
CAS
Article
Google Scholar
Dalgleish DG, Law AJR (1989) pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. J Dairy Res 56:727–735
Article
Google Scholar
Dalgleish DG, Spagnuolo PA, Goff HD (2004) A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. Int Dairy J 14:1025–1031
CAS
Article
Google Scholar
Dalsgaard TK, Nielsen JH, Larsen LB (2007) Proteolysis of milk proteins lactosylated in model systems. Mol Nutr Food Res 51:404–414
CAS
Article
Google Scholar
Darewicz M, Dziuba J, Mioduszewska H, Minkiewicz P (1999a) Modulation of physico-chemical properties of bovine β-casein by nonenzymatic glycation associated with enzymatic dephosphorylation. Acta Aliment Hung 28:339–354
CAS
Article
Google Scholar
Darewicz M, Dziuba J, Mioduszewska H (1999b) Some physico-chemical properties and structural changes of bovine β-casein upon glycation. Nahrung 42:213–214
Article
Google Scholar
Davies DT, White JCD (1960) The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and in determining the partition of milk constituents between the aqueous and disperse phases. J Dairy Res 27:171–190
CAS
Article
Google Scholar
De Jong GAH, Koppelman SJ (2002) Transglutaminase catalyzed reactions: impact on food applications. J Food Sci 67:2798–2806
Article
Google Scholar
De Kort E, Minor M, Snoeren T, van Hooijdonk T, van der Linden E (2011) Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions. Int Dairy J 21:907–913
Article
CAS
Google Scholar
De Kruif CG (1997) Skim milk acidification. J Colloid and Interface Sci 185:19–25
Article
Google Scholar
De Kruif CG (2003) Non-food applications of caseins. In WY Aalbersberg, RJ Hamer, P Jasperse, HHJ de Jongh, CG de Kruif, P Walstra, FA de Wolf (eds) Progress in biotechnology: industrial proteins in perspective, Vol. 23 (pp. 259–263, 269). Amsterdam: Elsevier Science Ltd
De Kruif CG, Holt C (2003) Casein micelle structure functions and interactions 1. In Fox, P. F., McSweeney, P. L. H., Eds.; Advanced dairy chemistry—proteins part A, 3rd edn. Kluwer Academic/Plenum Publishers: New York, Vol. 1, pp 233–276
De Kruif CG, Huppertz T, Urban VS, Petukhov AV (2012) Casein micelles and their internal structure. Adv Colloid Interface Sci 171:36–52
Article
CAS
Google Scholar
Desobry-Banon S, Richard F, Hardy J (1994) Study of acid and rennet coagulation of high pressurised milk. J Dairy Sci 77:3267–3274
CAS
Article
Google Scholar
Dickinson E (2006) Structure formation in casein-based gels, foams, and emulsions. Colloids Surfaces A: Physicochem Eng Asp 288:3–11
CAS
Article
Google Scholar
Donato L, Guyomarc’h F (2009) Formation and properties of the whey protein/κ-casein complexes in heated skim milk—a review. Dairy Sci Technol 89:3–29
CAS
Article
Google Scholar
Downey WK, Murphy RF (1970) The temperature-dependent dissociation of β-casein from bovine casein micelles and complexes. J Dairy Res 37:361–372
CAS
Article
Google Scholar
Dziuba J, Minkiewicz P (1996) Influence of glycosylation on micelle-stabilizing ability and biological properties of C-terminal fragments of cow’s κ-casein. Int Dairy J 6:1017–1044
CAS
Article
Google Scholar
Endo TOHR, Taguchi HEIH (1973) The constituents of Gardenia jasminoides geniposide and genipin-gentiobioside. Chem Pharm Bull (Tokyo) 21:2684–2688
CAS
Article
Google Scholar
Evangelisti F, Calcagno C, Zunin P (1994) Relationship between blocked lysine and carbohydrate composition of infant formulas. J Food Sci 59:335–337
CAS
Article
Google Scholar
Faergemand M, Qvist KB (1997) Transglutaminase: effect on rheological properties, microstructure and permeability of set style acid skim milk gels. Food Hydrocoll 11:287–292
CAS
Article
Google Scholar
Faergemand M, Otte J, Qvist KB (1998) Emulsifying properties of milk proteins cross-linked with microbial transglutaminase. Int Dairy J 8:715–723
CAS
Article
Google Scholar
Famelart MH, Lepesant F, Gaucheron F, Le Graët Y, Schuck P (1996) pH-induced physicochemical modifications of native phosphocaseinate suspensions: influence of aqueous phase. Lait 76:445–460
CAS
Article
Google Scholar
Famelart MH, Gaucheron F, Mariette F, Le Graët Y, Raulot K, Boyaval E (1998) Acidification of pressure-treated milk. Int Dairy J 7:325–330
Article
Google Scholar
Famelart MH, Le Graët Y, Raulot K (1999) Casein micelle dispersions into water, NaCl and CaCl2: physicochemical characteristics of micelles and rennet coagulation. Int Dairy J 9:293–297
CAS
Article
Google Scholar
Ferrer M, Alexander M, Corredig M (2014) Changes in the physico-chemical properties of casein micelles during ultrafiltration combined with diafiltration. LWT Food Sci Technol 59:173–180
CAS
Article
Google Scholar
Foegeding AE, Davis JP (2011) Food protein functionality: a comprehensive approach. Food Hydrocoll 25:1853–1864
CAS
Article
Google Scholar
Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18:677–684
CAS
Article
Google Scholar
Fox PF, McSweeney PL (1998) Dairy chemistry and biochemistry. Blackie Academic and Professional Publishers, London
Google Scholar
Fox PF, Mulvihill DM (1983) Functional properties of caseins, caseinates and casein co-precipitates. In: Physico-chemical aspects of dehydrated protein-rich milk products, IDF Symposium, Helsingor, Denmark, Statens Forsogsmejeri, Hillerod, Denmark (pp. 188–259)
Gastaldi E, Trial N, Guillaume C, Bourret E, Gontard N, Cuq JL (2003) Effect of controlled k-casein hydrolysis on rheological properties of acid milk gels. J Dairy Sci 86:704–711
CAS
Article
Google Scholar
Gaucheron F (2001) Heat-induced deamidation of casein molecules: influence of physicochemical conditions. Milchwissenchaft 56:183–187
CAS
Google Scholar
Gaucheron F (2004a) Interactions caséines-cations. In: “Minéraux et produits laitiers”, Editions Tec et Doc, Paris. pp 81–112
Gaucheron F (2004b) Minéraux et produits laitiers. Tec & Doc, Paris
Google Scholar
Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483
CAS
Article
Google Scholar
Gaucheron F, Famelart MH, Le Graët Y (1996) Iron- supplemented caseins: preparation physicochemical characterization and stability. J Dairy Res 63:233–243
CAS
Article
Google Scholar
Gaucheron F, Famelart MH, Mariette F, Raulot K, Michel F, Le Graët Y (1997a) Combined effects of temperature and high pressure treatments on physicochemical characteristics of skim milk. Food Chem 59:439–447
CAS
Article
Google Scholar
Gaucheron F, Le Graët Y, Raulot K, Piot M (1997b) Physicochemical characterization of iron-supplemented skim milk. Int Dairy J 7:141–148
CAS
Article
Google Scholar
Gaucheron F, Le Graët Y, Boyaval E, Piot M (1997c) Binding of cations to casein molecules: importance of physicochemical conditions. Milchwissenchaft 52:322–327
CAS
Google Scholar
Gaucheron F, Le Graët Y, Briard V (2000) Effect of NaCl addition on the mineral equilibrium of concentrated and acidified casein micelles. Milchwissenchaft 55:82–86
CAS
Google Scholar
Gaucheron F, Mollé D, Pannetier R (2001) Influence of pH on the heat-induced proteolysis of casein molecules. J Dairy Res 68:71–80
CAS
Article
Google Scholar
Girerd E, Martin JE, Mesnier D, Lorient D (1984) Influence des modifications chimiques de la caséine sur ses propriétés fonctionnelles. Sci Alim 4:251–257
CAS
Google Scholar
Grufferty MB, Fox PF (1985) Effect of added NaCl on some physicochemical properties of milk. Ir J Food Sci Technol 9:1–9
CAS
Google Scholar
Gu YS, Matsumura Y, Yamaguchi S, Mori T (2001) Action of protein-glutaminase on α-lactalbumin in the native and molten globule states. J Agric Food Chem 49:5999–6005
CAS
Article
Google Scholar
Guillaume C, Jimenez L, Cuq JL, Marchesseau S (2004) An original pH-reversible treatment of milk to improve rennet gelation. Int Dairy J 14:305–311
CAS
Article
Google Scholar
HadjSadok A, Pitkowski A, Nicolai T, Benyahia L, Moulai-Mostefa N (2008) Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food Hydrocoll 22:1460–1466
CAS
Article
Google Scholar
Hamada JS (1994) Deamidation of food proteins to improve functionality. Crit Rev Food Sci Nutr 34:283–292
CAS
Article
Google Scholar
Han XQ, Pfeifer JK, Lincourt RH, Schuerman JM (2003) Process for making a cheese product using transglutaminase. U.S. Patent 6 572 901 B2
Haque ZU (1993) Influence of milk peptides in determining the functionality of milk proteins: a review. J Dairy Sci 76:311–320
CAS
Article
Google Scholar
Haratifar S, Corredig M (2014) Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem 143:27–32
CAS
Article
Google Scholar
Harbourne N, Jacquier JC, O’Riordan D (2011) Effects of addition of phenolic compounds on the acid gelation of milk. Int Dairy J 21:185–191
CAS
Article
Google Scholar
Hiller B, Lorenzen PC (2009) Effect of phosphatase/transglutaminase treatment on molar mass distribution and techno-functional properties of sodium caseinate. LWT Food Sci Technol 42:87–92
CAS
Article
Google Scholar
Hinz K, Huppertz T, Kulozik U, Kelly AL (2007) Influence of enzymatic cross-linking on milk fat globules and emulsifying properties of milk proteins. Int Dairy J 17:289–293
CAS
Article
Google Scholar
Hoagland PD (1966) Acylated β-caseins: electrostatic interactions and aggregation. J Dairy Sci 49:783–787
CAS
Article
Google Scholar
Holt C (1992) Structure and stability of bovine casein micelles. Adv Protein Chem 43:63–151
CAS
Article
Google Scholar
Holt C (1995) Effect of heating and cooling on the milk salts and their interaction with casein, In PF Fox, ed.: Heat induced changes in milk. International Dairy Federation, special issue No.9501, Bruxelles, pp 105–133
Holt C (1997) The milk salts and their interaction with casein. In: Fox PF, Chapman & Hall: Advanced dairy chemistry, volume 3, lactose, water, salts and vitamins, 2nd ed., London, pp. 233–256
Holt C, Horne DS (1996) The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth Milk Dairy J 50:85–111
CAS
Google Scholar
Holt C, Carver J, Ecroyd H, Thorn DC (2013) Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 96:6127–6146
CAS
Article
Google Scholar
Horne DS (1986) Steric stabilization and casein micelle stability. J Coll Interface Sci 111:250–260
CAS
Article
Google Scholar
Horne DS (1999) Formation and structure of acidified milk gels. Int Dairy J 9:261–268
CAS
Article
Google Scholar
Huppertz T (2009) Novel applications of enzymes in the dairy sector: optimizing functional properties of milk proteins by enzymatic cross-linking. In: Corredig M Ed.: Dairy-derived ingredients, food and nutraceutical uses. Woodhead Publishing Limited and CRC Press, pp 394–416
Huppertz T, De Kruif CG (2008) Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int Dairy J 18:556–565
CAS
Article
Google Scholar
Huppertz T, Fox PF (2006) Effect of NaCl on some physico-chemical properties of concentrated bovine milk. Int Dairy J 16:1142–1148
CAS
Article
Google Scholar
Huppertz T, Kruif D (2007) Disruption and reassociation of casein micelles during high pressure treatment: influence of whey proteins. J Dairy Res 74:194–197
CAS
Article
Google Scholar
Huppertz T, Fox PF, Kelly AL (2004a) High pressure treatment of bovine milk: effect on casein micelles and whey proteins. J Dairy Res 71:97–106
CAS
Article
Google Scholar
Huppertz T, Fox PF, Kelly AL (2004b) Properties of casein micelles in high pressure-treated bovine milk. Food Chem 87:103–110
CAS
Article
Google Scholar
Huppertz T, Smiddy MA, De Kruif CG (2007) Biocompatible micro-gel particles from cross-linked casein micelles. Biomacromolecules 8:1300–1305
CAS
Article
Google Scholar
Huppertz T, Vaia B, Smiddy MA (2008) Reformation of casein particles from alkaline-disrupted casein micelles. J Dairy Res 75:44–47
CAS
Article
Google Scholar
Hussain R, Gaiani C, Aberkane L, Scher J (2011a) Characterization of high-milk-protein powders upon rehydration under various salt concentrations. J Dairy Sci 94:14–23
CAS
Article
Google Scholar
Hussain R, Gaiani C, Scher J (2011b) Revealing casein micelle dispersion under various ranges of NaCl: evolution of particles size and structure. World Acad Sci Eng Technol 73:972–976
Google Scholar
Ichilczyk-Leone J, Amram Y, Scheind N, Lenoir J (1981) Le refroidissement du lait et son comportement en fromagerie. I. Incidences du refroidissement du lait sur ses caractères physico-chimiques et son comportement vis-à-vis de la présure. Rev Lait Fr 401:7–18
Google Scholar
Jacobsen J, Wind SL, Rasholt EL, van den Brink JM (2014) N-Glycosidase F improves gel firmness in fermented milk products. Int Dairy J 38:169–173
CAS
Article
Google Scholar
Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry, physics, applications. J Texture Stud 37:113–155
Article
Google Scholar
Johnston DE, Murphy RJ (1993) Effects of some calcium-chelating agents on the physical properties of acid-set milk gels. J Dairy Res 59:197–208
Johnston DE, Austin BA, Murphy RJ (1992) Effects of high pressure on milk. Milchwissenschaft 47:760–763
CAS
Google Scholar
Kaliappan S, Lucey JA (2011) Influence of mixtures of calcium-chelating salts on the physicochemical properties of casein micelles. J Dairy Sci 94:4255–4263
CAS
Article
Google Scholar
Karlsson AO, Ipsen R, Shrader K, Ardo Y (2005) Relationship between physical properties of casein micelles and rheology of skim milk concentrate. J Dairy Sci 88:3784–3797
CAS
Article
Google Scholar
Kartsova LA, Alekseeva AV (2008) Effect of milk caseins on the concentration of polyphenolic compounds in tea. J Anal Chem 63:1107–1111
CAS
Article
Google Scholar
Kelly PM, Burgess KJ (1978) Foaming properties of milk protein concentrate prepared by ultrafiltration. Ir J Food Sci Technol 2:93–104
CAS
Google Scholar
Kethireddipalli P, Hill AR, Dalgleish DG (2010) Protein interactions in heat-treated milk and effect on rennet coagulation. Int Dairy J 20:838–843
CAS
Article
Google Scholar
Knoop AM, Peters KH (1975) Phosphatase activity in acidified milk. Milchwissenschaft 30:674–680
CAS
Google Scholar
Koutina G, Knudsen JC, Andersen U, Skibsted LH (2014) Temperature effect on calcium and phosphorus equilibria in relation to gel formation during acidification of skim milk. Int Dairy J 36:65–73
CAS
Article
Google Scholar
Kumazawa Y, Miwa N (2005) Process for producing cheese curd. U.S. Patent 2005/0123645 A1
Lakkis J, Villota R (1992) Effect of acylation on substructural properties of proteins: a study using fluorescence and circular dichroism. J Agric Food Chem 40:553–560
CAS
Article
Google Scholar
Le Graët Y, Brulé G (1993) Equilibres minéraux du lait: influence du pH et de la force ionique. Lait 73:51–60
Article
Google Scholar
Le Graët Y, Gaucheron F (1999) pH-induced solubilization of minerals from casein micelles: influence of casein concentration and ionic strength. J Dairy Res 66:215–224
Article
Google Scholar
Le Ray C, Maubois JL, Gaucheron F, Brulé G, Pronnier P, Garnier F (1998) Heat stability of reconstituted casein micelle dispersions: changes induced by salt addition. Lait 78:375–390
Article
Google Scholar
Le TT, Holland JW, Bhandari B, Alewood PF, Deeth HC (2013) Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. Int Dairy J 31:83–91
CAS
Article
Google Scholar
Lee SW, Shimizu M, Kaminogawa S, Yamauchi K (1987) Emulsifying properties of peptides obtained from the hydrolysates of β-casein. Agric Biol Chem 51:161–166
CAS
Article
Google Scholar
Li-Chan E, Nakai S (1989) Enzymatic dephosphorylation of bovine casein to improve acid clotting properties and digestibility for infant formula. J Dairy Res 56:381–390
CAS
Article
Google Scholar
Lieske B (1999) Effects of succinylation on selected physico-chemical properties on native casein micelles in milk. Milchwissenchaft 54:623–627
CAS
Google Scholar
Lieske B, Konrad G, Faber W (2000) Effects of succinylation on the renneting properties of raw milk. Milchwissenchaft 55:71–74
CAS
Google Scholar
Liu J, Ru Q, Ding Y (2012) Glycation a promising method for food protein modification: physicochemical properties and structure, a review. Food Res Int 49:170–183
CAS
Article
Google Scholar
Liu DZ, Weeks MG, Dunstan DE, Martin GJO (2013) Temperature-dependent dynamics of bovine casein micelles in the range 10–40 °C. Food Chem 141:4081–4086
CAS
Article
Google Scholar
Liu XT, Zhang H, Wang F, Luo J, Guo HY, Ren FZ (2014a) Rheological and structural properties of differently acidified and renneted milk gels. J Dairy Sci 97:3292–3299
CAS
Article
Google Scholar
Liu Z, Juliano P, Williams RPW, Niere J, Augustin MA (2014b) Ultrasound effects on the assembly of casein micelles in reconstituted skim milk. J Dairy Res 81:146–155
CAS
Article
Google Scholar
Liu Z, Juliano P, Williams RPW, Niere J, Augustin MA (2014c) Ultrasound improves the renneting properties of milk. Utrason Sonochem 21:2131–2137
CAS
Article
Google Scholar
Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73–83
CAS
Article
Google Scholar
Lorenzen PC (2002) Enzymatic crosslinking of dairy proteins. In: New processing technologies for the future. Proceedings of the Emerging Technologies Conference, Auckland, New Zealand. International Dairy Federation, pp. 30–36
Lorenzen PC, Reimerdes EH (1992) Enzymatic dephosphorylation of caseins and creaming behaviour of o/w emulsions stabilized with dephosphorylated casein fractions. Nahrung 36:595–599
CAS
Article
Google Scholar
Lorenzen PC, Schlimme E, Roos N (1998) Crosslinking of sodium caseinate by a microbial transglutaminase. Nahrung 42:151–154
CAS
Article
Google Scholar
Lorient D, Linden G (1976) Dephosphorylation of bovine casein by milk phosphatase. J Dairy Res 43:19–26
CAS
Article
Google Scholar
Lucey JA, Tamehana M, Singh H, Munro PA (2001) Effect of heat treatment on the physical properties of milk gels made with both rennet and acid. Int Dairy J 11:559–565
CAS
Article
Google Scholar
Luo Y, Pan K, Zhong Q (2014) Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: partial characterizations. Food Chem 155:146–154
CAS
Article
Google Scholar
Madadlou A, Mousavi ME, Emam-djomeh Z, Ehsani M, Sheehan D (2009) Sonodisruption of re-assembled casein micelles at different pH values. Ultrason Sonochem 16:644–648
CAS
Article
Google Scholar
Madadlou A, Emam-Djomeh Z, Mousavi ME, Mohamadifar M, Ehsani M (2010) Acid-induced gelation behavior of sonicated casein solutions. Ultrason Sonochem 17:153–158
CAS
Article
Google Scholar
Marchin S, Putaux JL, Pignon F, Léonil J (2007) Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. J Chem Phys 126:045101
Article
CAS
Google Scholar
Matheis G (1991) Phosphorylation of food proteins with phosphorus oxychloride—improvement of functional and nutritional properties: a review. Food Chem 39:13–26
CAS
Article
Google Scholar
Matheis G, Penner MH, Feeney RE, Whitaker JR (1983) Phosphorylation of casein and lysozyme by phosphorus oxychloride. J Agric Food Chem 31:379–387
CAS
Article
Google Scholar
McCarthy NA, Kelly AL, O’Mahony JA, Fenelon MA (2013) The physical characteristics and emulsification properties of partially dephosphorylated bovine β-casein. Food Chem 138:1304–1311
CAS
Article
Google Scholar
McMahon DJ, Du H, McManus WR, Larsen KM (2009) Microstructural changes in casein supramolecules during acidification of skim milk. J Dairy Sci 92:5854–5867
CAS
Article
Google Scholar
Medina AL, Colas B, Le Meste M, Renaudet I, Lorient D (1992) Physicochemical and dynamic properties modified by chemical phosphorylation. J Food Sci 57:617–620
CAS
Article
Google Scholar
Mekmene O, Le Graët Y, Gaucheron F (2009) A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chem 116:233–239
CAS
Article
Google Scholar
Mekmene O, Le Graët Y, Gaucheron F (2010) Theoretical model for calculating ionic equilibria in milk as a function of pH: comparison to experiment. J Agric Food Chem 58:4440–4447
CAS
Article
Google Scholar
Menéndez-Aguirre O, Stuetz W, Grune T, Kessler A, Weiss J, Hinrichs J (2011) High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles. High Pressure Res 31:265–274
Article
CAS
Google Scholar
Menéndez-Aguirre O, Kessler A, Stuetz W, Grune T, Weiss J, Hinrichs J (2014) Increased loading of vitamin D2 in reassembled casein micelles with temperature-modulated high pressure treatment. Food Res Int 64:74–80
Article
CAS
Google Scholar
Merel-Rausch E, Kulozik U, Hinrichs J (2007) Influence of pressure release rate and protein concentration on the formation of pressure-induced casein structures. J Dairy Res 74:283–289
CAS
Article
Google Scholar
Minkiewicz P, Dziuba J, Muzinska B (1993) The contribution of N-acetylneuraminic acid in the stabilization of micellar casein. Pol J Food Nutr Sci 2(43):39–48
CAS
Google Scholar
Miwa N, Yokoyama K, Wakabayashi H, Nio N (2010) Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. Int Dairy J 20:393–399
CAS
Article
Google Scholar
Miwa N, Nio N, Somoto K (2014) Effect of enzymatic deamidation by protein-glutaminase on the textural and microstructural properties of set yoghurt. Int Dairy J 36:1–5
CAS
Article
Google Scholar
Mizuno R, Lucey JA (2005) Effects of emulsifying salts on the turbidity and calcium-phosphate–protein interactions in casein micelles. J Dairy Sci 88:3070–3078
CAS
Article
Google Scholar
Molina ACT, Alli I, Konishi Y, Kermasha S (2007) Effect of dephosphorylation on bovine casein. Food Chem 101:1263–1271
Article
CAS
Google Scholar
Moon JH, Hong YH, Huppertz T, Fox PF, Kelly AL (2009) Properties of casein micelles cross-linked by transglutaminase. Int J Dairy Technol 62:27–32
CAS
Article
Google Scholar
Morr CV (1967a) Some effects of pyrophosphate and citrate ions upon the colloidal caseinate-phosphate micelles and ultrafiltrate of raw and heated skimmilk. J Dairy Sci 50:1038–1044
CAS
Article
Google Scholar
Morr C (1967b) Effect of oxalate and urea upon ultracentrifugation properties of raw and heated skimmilk casein micelles. J Dairy Sci 50:1744–1751
CAS
Article
Google Scholar
Motoki M, Nio N, Takinami K (1984) Functional properties of food proteins polymerized by transglutaminase. Agric Biol Chem 48:1257–1261
CAS
Article
Google Scholar
Motoki M, Seguro K, Nio N, Takinami K (1986) Glutamine-specific deamidation of αs1-casein by transglutaminase. Agric Biol Chem 50:3025–3030
CAS
Article
Google Scholar
Mounsey JS, O’Kennedy BT, Kelly PM (2005) Influence of transglutaminase treatment on properties of micellar casein and products made thereof. Lait 85:1–14
Article
CAS
Google Scholar
Nieuwenhuijse JA, Timmermans W, Walstra P (1988) Calcium and phosphate partitions during the manufacture of sterilized concentrated milk and their relations to the heat stability. Neth Milk Dairy J 42:387–421
CAS
Google Scholar
Nio N, Motoki M, Takinami K (1986) Gelation mechanism of protein solution by transglutaminase. Agric Biol Chem 50:851–855
CAS
Article
Google Scholar
Nipun Babu V, Kannan S (2012) Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis. Int J Biol Macromol 51:1103–1108
CAS
Article
Google Scholar
Nogueira Silva N, Bahri A, Guyomarc’h F, Beaucher E, Gaucheron F (2015) AFM study of casein micelles cross-linked by genipin: effects of acid pH and citrate. Dairy Sci Technol 95:75–86
Article
CAS
Google Scholar
Nonaka M, Matsuura Y, Nakano K, Motoki M (1997) Improvement of the pH–solubility profile of sodium caseinate by using Ca2+-independent microbial transglutaminase with gelatin. Food Hydrocoll 11:347–349
CAS
Article
Google Scholar
O’Connell JE, Fox PF (2001) Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. Int Dairy J 11:103–120
Article
Google Scholar
O’Regan J, Mulvihill DM (2009) Preparation, characterisation and selected functional properties of sodium caseinate–maltodextrin conjugates. Food Chem 115:1257–1267
Article
CAS
Google Scholar
O’Sullivan MM, Kelly AL, Fox PF (2002) Influence of transglutaminase treatment on some physico-chemical properties of milk. J Dairy Res 69:433–442
Google Scholar
Odagiri S, Nickerson TA (1965a) Micellar changes in skim milk treated with alkali or acid. J Dairy Sci 48:1157–1160
CAS
Article
Google Scholar
Odagiri S, Nickerson TA (1965b) Complexing of calcium by hexametaphosphate, oxalate, citrate, and ethylenediamine-tetraacetate in milk. II. Dialysis of milk containing complexing agents. J Dairy Sci 48:19–22
CAS
Article
Google Scholar
Oldfield DJ, Singh H, Taylor MW, Pearce KN (2000) Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk. Int Dairy J 10:509–518
CAS
Article
Google Scholar
Oliver CM, Melton LD, Stanley RA (2006) Glycation of caseinate by fructose and fructooligosaccharides during controlled heat treatment in the ‘dry’ state. J Sci Food Agric 86:722–731
CAS
Article
Google Scholar
Omoarukhe ED, On-Nom N, Grandison AS, Lewis MJ (2010) Effects of different calcium salts on properties of milk related to heat stability. Int J Dairy Technol 63:504–511
CAS
Article
Google Scholar
Ono T, Obata T (1989) A model for the assembly of bovine casein micelles from F2 and F3 subunits. J Dairy Res 56:453–461
Article
Google Scholar
Orlien V, Knudsen JC, Colon M, Skibsted LH (2006) Dynamics of casein micelles in skim milk during and after high pressure treatment. Food Chem 98:513–521
CAS
Article
Google Scholar
Ouanezar M, Guyomarc’h F, Bouchoux A (2012) AFM Imaging of milk casein micelles: evidence for structural rearrangement upon acidification. Langmuir 28:4915–4919
CAS
Article
Google Scholar
Ozcan-Yilsay T, Lee WJ, Horne D, Lucey JA (2006) Effect of trisodium citrate on rheological properties and microstructure of yogurt. J Dairy Sci 90:1644–1652
Article
CAS
Google Scholar
Ozer B, Avni Kirmaci H, Oztekin S, Hayaloglu A, Atamer M (2007) Incorporation of microbial transglutaminase into non-fat yogurt production. Int Dairy J 17:199–207
CAS
Article
Google Scholar
Panyam D, Kilara A (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Technol 7:120–125
CAS
Article
Google Scholar
Pearse MJ, Linklater PM, Hall RJ, Mackinlay AG (1986) Effect of casein micelle composition and casein dephosphorylation on coagulation and syneresis. J Dairy Res 53:381–390
CAS
Article
Google Scholar
Pepper L, Thompson MP (1963) Dephosphorylation of αS- and κ-caseins and its effect on micelle stability in the κ-αS-casein system. J Dairy Sci 46:764–767
CAS
Article
Google Scholar
Philippe M, Gaucheron F, Le Graët Y, Garem A, Michel F (2003) Physicochemical characterization of calcium-supplemented skim milk. Lait 83:45–59
CAS
Article
Google Scholar
Philippe M, Gaucheron F, Le Graët Y (2004) Physicochemical characteristics of calcium supplemented skim milk: comparison of three soluble calcium salts. Milchwissenchaft 59:498–504
CAS
Google Scholar
Philippe M, Le Graët Y, Gaucheron F (2005) The effect of different cations on the physicochemical characteristics of casein micelles. Food Chem 90:673–683
CAS
Article
Google Scholar
Pierre A, Brulé G (1981) Mineral and protein equilibria between the colloidal and soluble phases of milk at low temperature. J Dairy Res 48:417–428
CAS
Article
Google Scholar
Pierre A, Fauquant J, Le Graët Y, Piot M, Maubois JL (1992) Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72:461–474
CAS
Article
Google Scholar
Pitkowski A, Nicolai T, Durand D (2008) Scattering and turbidity study of the dissociation of casein by calcium chelation. Biomacromolecules 9:369–375
CAS
Article
Google Scholar
Pouliot M, Pouliot Y, Britten M, Maubois JL, Fauquant J (1994) Study of the dissociation of β-casein from native phosphocaseinate. Lait 74:325–332
CAS
Article
Google Scholar
Qi PX (2007) Studies of casein micelle structure: the past and the present. Lait 87:363–383
CAS
Article
Google Scholar
Raikos V (2010) Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocoll 24:259–265
CAS
Article
Google Scholar
Raouche S, Naille S, Dobenesque M, Bot A, Jumas JC, Cuq JL, Marchesseau S (2009a) Iron fortification of skim milk: minerals and 57Fe Mössbauer study. Int Dairy J 19:53–63
Article
CAS
Google Scholar
Raouche S, Dobenesque M, Bot A, Cuq JL, Marchesseau S (2009b) Casein micelles as vehicle for iron fortification of foods. Eur Food Res Technol 229:929–935
CAS
Article
Google Scholar
Regnault S, Dumay E, Cheftel JC (2006) Pressurisation of raw skim milk and of a dispersion of phosphocaseinate at 9 °C or 20 °C: effects on the distribution of minerals and proteins between colloidal and soluble phases. J Dairy Res 73:91–100
CAS
Article
Google Scholar
Reimerdes EH, Roggenbuck G (1980) Chemistry and technology of milk proteins. I. Modification of beta-casein and casein micelles by acid phosphatase from potatoes. Milchwissenschaft 35:195–201
CAS
Google Scholar
Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114:905–911
CAS
Article
Google Scholar
Rollema HS (2003) Caseinates. In W. Y. Aalbersberg, R. J. Hamer, P. Jasperse, H. H. J. de Jongh, C. G. de Kruif, P. Walstra, and F. A. de Wolf (Eds.), Progress in biotechnology: industrial proteins in perspective, vol. 23 (pp. 255–259, 269). Amsterdam, Elsevier Science Ltd
Rose D, Tessier H (1959) Composition of ultrafiltrates from milk heated at 80 to 230 F in relation to heat stability. J Dairy Sci 42:969–980
CAS
Article
Google Scholar
Salaun F, Mietton B, Gaucheron F (2007) Influence of mineral environment on the buffering capacity of casein micelles. Milchwissenchaft 62:20–23
CAS
Google Scholar
Santos CV, Tomasula PM (2000) Acylation and solubility of casein precipitated by carbon dioxide. J Food Sci 65:227–230
CAS
Article
Google Scholar
Scaloni A, Perillo V, Franco P, Fedele E, Froio R, Ferrara L, Bergamo P (2002) Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies. Biochim Biophys Acta (BBA)-Proteins and Proteomics 1598:30–39
CAS
Article
Google Scholar
Schey A (2003) Texture improvement of fermented dairy products by enzymatic crosslinking with transglutaminase. In: Fermented milk. Proceedings of the IDF-seminar on Aroma and Texture of Fermented Milk, Kolding, Denmark, pp. 371–375
Schmidt DG (1982) Association of caseins and casein micelle structure. Dev Dairy Chem 1:61–86
CAS
Google Scholar
Schokker EP, Church JS, Mata JP, Gilbert EP, Puvanenthiran A, Udabage P (2011) Reconstitution properties of micellar casein powder: effects of composition and storage. Int Dairy J 21:877–886
CAS
Article
Google Scholar
Schrader K, Buchheim W (1998) High pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. II. Kinetics of the casein micelle disintegration and protein interactions in milk. Kiel Milchwirtsch Forschungsber 50:79–88
CAS
Google Scholar
Schuck P, Piot M, Méjean S, Le Graët Y, Fauquant J, Brulé G, Maubois JL (1994) Déshydratation par atomisation de phosphocaséinate natif obtenu par microfiltration sur membrane. Lait 74:375–388
CAS
Article
Google Scholar
Schuck P, Davenel A, Mariette F, Briard V, Méjean S, Piot M (2002) Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. Int Dairy J 12:51–57
CAS
Article
Google Scholar
Sharma R, Lorenzen PC, Qvist KB (2001) Influence of transglutaminase treatment of skim milk on the formation of epsilon- (gamma-glutamyl)-lysine and the susceptibility of individual proteins towards crosslinking. Int Dairy J 11:785–793
CAS
Article
Google Scholar
Shibauchi Y, Yamamoto H, Sagara Y (1992) Conformational change of casein micelles by high pressure treatment. In: High pressure and biotechnology, eds. C. Balny, R. Hayashi, K. Heremans & P. Masson. John Libbey Eurotext Ltd, Montrouge, France, pp 239–241
Siciliano R, Rega B, Amoresano A, Pucci P (2000) Modern mass spectrometric methodologies in monitoring milk quality. Anal Chem 72:408–415
CAS
Article
Google Scholar
Siciliano R, Mazzeo M, Arena S, Renzone G, Scaloni A (2013) Mass spectrometry for the analysis of protein lactosylation in milk products. Food Res Int 54:988–1000
CAS
Article
Google Scholar
Sikand V, Tong PS, Walker J (2013) Effect of adding salt during the diafiltration step of milk protein concentrate powder manufacture on mineral and soluble protein composition. Dairy Sci Technol 93:401–413
CAS
Article
Google Scholar
Silva CJSM, Sousa F, Gübitz G, Cavaco-Paulo A (2004) Chemical modifications on proteins using glutaraldehyde. Food Technol Biotechnol 42:51–56
CAS
Google Scholar
Silva NN, Piot M, de Carvalho AF, Violleau F, Fameau AL, Gaucheron F (2013) pH-induced demineralization of casein micelles modifies their physico-chemical and foaming properties. Food Hydrocoll 32:322–330
CAS
Article
Google Scholar
Silva NN, Saint Jalmes A, De Carvalho A, Gaucheron F (2014) Development of casein microgels from cross-linking of casein micelles by genipin. Langmuir 30:10167–10175
CAS
Article
Google Scholar
Sitohy M, Chobert JM, Haertle T (1995) Phosphorylation chimique des protéines du lait. Influence des conditions de la reaction. Colloques de l'INRA (France). no. 71
Slattery H, Fitzgerald RJ (1998) Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. J Food Sci 63:418–422
CAS
Article
Google Scholar
Smiddy MA, Martin JEGH, Kelly AL, de Kruif CG, Huppertz T (2006) Stability of casein micelles cross-linked by transglutaminase. J Dairy Sci 89:1906–1914
CAS
Article
Google Scholar
Song F, Zhang LM, Yang C, Yan L (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm 373:41–47
CAS
Article
Google Scholar
Steffan W, Balzer H, Lippert F, Sambor BC, Bradbury AGW, Henle T (2006) Characterization of casein lactosylation by capillary electrophoresis. Eur Food Res Technol 222:467–471
CAS
Article
Google Scholar
Swaisgood HE (1992) Chemistry of the caseins. In: Fox PF (ed) Advanced dairy chemistry: vol 1, 2nd edn. Elsevier Applied Science, Proteins New York, pp 63–110
Google Scholar
Swaisgood HE (2003) Chemistry of caseins. In Fox PF, McSweeney PLH., Eds Advanced dairy chemistry—proteins part A, 3rd edn.; Kluwer Academic/Plenum Publishers: New York, Vol. 1, pp 139–201
Tang C, Yang XQ, Chen Z, Wu H, Peng ZY (2005) Physicochemical and structural characteristics of sodium caseinate biopolymers induced by microbial transglutaminase. J Food Biochem 29:402–421
CAS
Article
Google Scholar
Timmer-Keetels CJ, Nieuwenhuisje JA, Zijtveld-van der Wiel JH (2012). Food products having improved heat stability. U.S. Patent 0231117 A1
Titapiccolo GI, Corredig M, Alexander M (2010) Modification to the renneting functionality of casein micelles caused by nonionic surfactants. J Dairy Sci 93:506–514
CAS
Article
Google Scholar
Tran Le, Saveyn P, Hoa HD, Van der Meeren P (2008) Determination of heat-induced effects on the particle size distribution of casein micelles by dynamic light scattering and nanoparticle tracking analysis. Int Dairy J 18:1090–1096
Tuinier R, de Kruif CG (2002) Stability of casein micelles in milk. J Chem Phys 117:1290–1295
CAS
Article
Google Scholar
Udabage P, McKinnon IR, Augustin MA (2000) Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents. J Dairy Res 67:361–370
CAS
Article
Google Scholar
Vaia B, Smiddy MA, Kelly AL, Huppertz T (2006) Solvent-mediated disruption of bovine casein micelles at alkaline pH. J Agric Food Chem 54:8288–8293
CAS
Article
Google Scholar
Van Boekel MAJS (1998) Effect of heating on Maillard reactions in milk. Food Chem 62:403–414
Article
Google Scholar
Van Boekel MAJS (1999) Heat-induced deamidation, dephosphorylation and breakdown of caseinate. Int Dairy J 9:237–241
Article
Google Scholar
Van Dijk HJM (1991) The properties of casein micelles. 4. The effects of the addition of NaCl, MgCl2 or NaOH on the partition of Ca, Mg and PO4 in cow’s milk. Neth Milk Dairy J 45:241–251
Google Scholar
Van Dijk HJM (1992) The properties of casein micelles. VI: behaviour above pH 9, and implications for the micelle model. Nederlands melk en Zuiveltijdschrift 46:101–113
Google Scholar
Van Hekken DL, Holsinger VH (2000) Use of cold microfiltration to produce unique β-casein enriched milk gels. Lait 80:69–76
Article
Google Scholar
Van Hekken DL, Strange ED (1994) Rheological properties and microstructure of dephosphorylated whole casein rennet gels. J Dairy Sci 77:907–916
Article
Google Scholar
Van Hooydonk ACM, Hagedoorn HG, Boerrigter IJ (1986) pH induced physico-chemical changes of casein micelles in milk and their effect on renneting. 2. Effect of pH on renneting of milk. Neth Milk Dairy J 40:281–296
Google Scholar
Vasbinder AJ, Rollema HS, De Kruif CG (2003) Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics. J Dairy Sci 86:1548–1555
CAS
Article
Google Scholar
Vercet A, Oria R, Marquina P, Crelier S, Lopez-Buesa P (2002) Rheological properties of yoghurt made with milk submitted to manothermosonication. J Agric Food Chem 50:6165–6171
CAS
Article
Google Scholar
Vidal V, Marchesseau S, Lagaude A, Cuq JL (1998) Influence of chemical agents on casein interactions in dairy products: chemical modification of milk proteins. Colloids and Surface B: Biointerfaces 12:7–14
CAS
Article
Google Scholar
Vidal V, Marchesseau S, Cuq JL (2002) Physicochemical properties of acylated casein micelles in milk. J Food Sci 67:42–47
CAS
Article
Google Scholar
Visser J, Minihan A, Smits P, Tjan SB, Heertje I (1986) Effects of pH and temperature on the milk salt system. Neth Milk Dairy J 40:351–368
CAS
Google Scholar
Walstra P (1990) On the stability of casein micelles. J Dairy Sci 73:1965–1979
CAS
Article
Google Scholar
Walstra P (1999) Casein sub-micelles: do they exist? Int Dairy J 9:189–192
CAS
Article
Google Scholar
Walstra P (2002) Physical chemistry of foods. Marcel Dekker Incorporated: New York
Walstra P, Wouters JTM, Geurts T (2006) Dairy science and technology; 2nd ed. Taylor and Francis Group: Boca Raton, Vol. 3, pp 109–157
Wang J, Su Y, Jia F, Jin H (2013) Characterization of casein hydrolysates derived from enzymatic hydrolysis. Chem Central J 7:62,1–8
Google Scholar
Ward BR, Goddard SJ, Augustin MA, McKinnon IR (1997) EDTA-induced dissociation of casein micelles and its effect on foaming properties of milk. J Dairy Res 64:495–504
CAS
Article
Google Scholar
Yamaguchi S, Yokoe M (2000) A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343
CAS
Article
Google Scholar
Yamaguchi S, Jeenes DJ, Archer DB (2001) Protein-glutaminase from Chryseobacterium proteolyticum, an enzyme that deamidates glutamyl residues in proteins. Eur J Biochem 268:1–13
Article
Google Scholar
Yamauchi K, Yoneda Y (1978) Effect of dephosphorylation of casein on its coagulation and proteolysis by chymosin. Agric Biol Chem 42:1031–1035
CAS
Article
Google Scholar
Yamauchi K, Takemoto S, Tsugo T (1967) Calcium-binding property of dephosphorylated caseins. Agric Biol Chem 31:54–63
CAS
Article
Google Scholar
Yang M, Shi Y, Wang P, Lui H, Wen P, Ren (2014) Effect of succinylation on the functional properties of yak caseins: a comparison with cow caseins. Dairy Sci Technol 94:359–372
CAS
Article
Google Scholar
Ye A (2011) Functional properties of milk protein concentrates: emulsifying properties, adsorption and stability of emulsions. Int Dairy J 21:14–20
CAS
Article
Google Scholar
Yong YH, Yamaguchi S, Gu YS, Mori T, Matsumura Y (2004) Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of alpha-zein. J Agric Food Chem 52:7094–7100
CAS
Article
Google Scholar
Yong YH, Yamaguchi S, Matsumura Y (2006) Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of wheat gluten. J Agric Food Chem 54:6034–6040
CAS
Article
Google Scholar