Skip to main content
Log in

Current ways to modify the structure of whey proteins for specific functionalities—a review

  • Review Paper
  • Published:
Dairy Science & Technology

Abstract

The native whey proteins have been intensively used in a multitude of food applications due to their high nutritional, biological, and versatile technofunctional properties. The range of applications of whey proteins has further been extended in the last decades by the use of whey protein aggregates offering new technofunctional properties. These properties are directly dependent on the structure of whey protein aggregates, i.e., their size, shape, density, surface properties, and the type of bonds maintaining proteins together in the aggregates. In this review, after a brief description of the major whey proteins, we examine the most important advances reported to date pertaining to the available approaches to modify the structure of whey proteins for specific functionalities. Our laboratory, Science and Technology of Milk and Eggs, has contributed significantly to the advancement of knowledge on the structure-function relationships of whey proteins either in the native or denatured/aggregated forms. Our expertise and research approaches are highlighted throughout some selected results accumulated during the last decade in comparison with results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akkermans C, Venema P, van der Goot AJ, Gruppen H, Bakx EJ, Boom RM, van der Linder E (2008) Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2. Biomacromolecules 9:1474–1479

    Article  CAS  Google Scholar 

  • Andoyo R, Guyomarc’h F, Cauty C, Famelart M-H (2014) Model mixtures evidence the respective roles of whey protein particles and casein micelles during acid gelation. Food Hydrocoll 37:203–212

    Article  CAS  Google Scholar 

  • Anema SG, de Kruif CG (2012) Co-acervates of lactoferrin and caseins. Soft Matter 8:4471–4478

    Article  CAS  Google Scholar 

  • Anema SG, Lee SK, Klostermeyer H (2007) Effect of pH at heat treatment on the hydrolysis of k-casein and the gelation of skim milk by chymosin. LWT Food Sci Technol 40:99–106

    Article  CAS  Google Scholar 

  • Arnaudov LN, de Vries R (2007) Theoretical modeling of the kinetics of fibrilar aggregation of bovine beta-lactoglobulin at pH 2. J Chem Phys 126:145106

    Article  CAS  Google Scholar 

  • Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Adv Lact Res 91:3–10

    CAS  Google Scholar 

  • Baussay K, Le Bon C, Nicolai T, Durand D, Busnel JP (2004) Influence of the ionic strength on the heat-induced aggregation of the globular protein beta-lactoglobulin at pH 7. Int J Biol Macromol 34:21–28

    Article  CAS  Google Scholar 

  • Bernal V, Jelen P (1984) Effect of calcium-binding on thermal-denaturation of bovine alpha-lactalbumin. J Dairy Sci 67:2452–2454

    Article  CAS  Google Scholar 

  • Bolder SG, Vasbinder AJ, Sagis LMC, van der Linden E (2007) Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation. Int Dairy J 17:846–853

    Article  CAS  Google Scholar 

  • Bouhallab S, Croguennec T (2014) Spontaneous assembly and induced aggregation of food proteins. Adv Polym Sci 256:67–102

    Article  CAS  Google Scholar 

  • Bouhallab S, Henry G, Caussin F, Croguennec T, Fauquant J, Mollé D (2004) Copper-catalyzed formation of disulfide-linked dimer of bovine beta-lactoglobulin. Lait 84:517–525

    Article  CAS  Google Scholar 

  • Bromley EHC, Krebs MRH, Donald AM (2006) Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. The Eur phys J E 21:145–152

  • Brownlow S, Cabral JHM, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1997) Bovine beta-lactoglobulin at 1.8 angstrom resolution - Still an enigmatic lipocalin. Structure 5:481–495

    Article  CAS  Google Scholar 

  • Bryant CM, Mcclements DJ (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci Technol 9:143–151

    Article  CAS  Google Scholar 

  • Chaufer B, Rabiller-Baudry M, Lucas D, Michel M, Timmer M (2000) Selective extraction of lysozyme from a mixture with lactoferrin by ultrafiltration. Role of the physico-chemical environment. Lait 80:197–203

    Article  CAS  Google Scholar 

  • Croguennec T, Leng N, Hamon P, Rousseau F, Jeantet R, Bouhallab S (2014) Caseinomacropeptide modifies the heat-induced denaturation-aggregation process of beta-lactoglobulin. Int Dairy J 36:55–64

    Article  CAS  Google Scholar 

  • Dannenberg F, Kessler H (1988a) Application of reaction-kinetics to the denaturation of whey proteins in heated milk. Milchwiss-Milk Sci Int 43:3–7

    CAS  Google Scholar 

  • Dannenberg F, Kessler HG (1988b) Effect of denaturation of beta-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis. Milchwissenschaft 43:632–635

    CAS  Google Scholar 

  • Dannenberg F, Kessler HG (1988c) Effect of denaturation of beta-lactoglobulin on texture properties of set-style nonfat yoghurt. 2. Firmness and flow properties. Milchwissenschaft 43:700–704

    CAS  Google Scholar 

  • De Wit JN (2009) Thermal behaviour of bovine beta-lactoglobulin at temperatures up to 150 °C. a review. Trends Food Sci Technol 20:27–34

    Article  CAS  Google Scholar 

  • Domike KR, Donald AM (2007) Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of beta-lactoglobulin and insulin. Biomacromolecules 8:3930–3937

    Article  CAS  Google Scholar 

  • Domike KR, Hardin E, Armstead DN, Donald AM (2009) Investigating the inner structure of irregular beta-lactoglobulin spherulites. Eur Phys J E 29:173–182

    Article  CAS  Google Scholar 

  • Donato L, Guyomarc’h F (2009) Formation and properties of the whey protein/kappa-casein complexes in heated skim milk—a review. Dairy Sci Technol 89:3–29

    Article  CAS  Google Scholar 

  • Donato L, Schmitt C, Bovetto L, Rouvet M (2009) Mechanism of formation of stable heat-induced beta-lactoglobulin microgels. Int Dairy J 19:295–306

    Article  CAS  Google Scholar 

  • Famelart MH, Guyomarc’h F, Morand M, Novales B (2011) Agrégation protéique et propriétés gélifiantes et moussantes des protéines laitières – quoi de neuf sur le plan des connaissances? Innov Agron 13:117–132

    Google Scholar 

  • Famelart M-H, Le NHT, Croguennec T, Rousseau F (2013) Are disulphide bonds formed during acid gelation of preheated milk? Int J Food Sci Technol 48:1940–1948

    Article  CAS  Google Scholar 

  • Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF (2004) Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J Dairy Sci 87:1641–1674

    Article  CAS  Google Scholar 

  • Farrell HM, Malin EL, Brown EM, Qi PX (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr Opin Colloid Interface Sci 11:135–147

    Article  CAS  Google Scholar 

  • Forge V, Wijesinha RT, Balbach J, Brew K, Robinson CV, Redfield C, Dobson CM (1999) Rapid collapse and slow structural reorganisation during the refolding of bovine alpha-lactalbumin. J Mol Biol 288:673–688

    Article  CAS  Google Scholar 

  • Goers J, Permyakov SE, Permyakov EA, Uversky VN, Fink AL (2002) Conformational prerequisites for α-lactalbumin fibrillation. Biochemistry 41(41):12546–12551

  • Graveland-Bikker JF, de Kruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    Article  CAS  Google Scholar 

  • Griko YV, Remeta DP (1999) Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin. Protein Sci 8:554–561

    Article  CAS  Google Scholar 

  • Gulzar M, Croguennec T, Jardin J, Piot M, Bouhallab S (2009) Copper modulates the heat-induced sulfhydryl/disulfide interchange reactions of beta-Lactoglobulin. Food Chem 116:884–891

    Article  CAS  Google Scholar 

  • Gulzar M, Bouhallab S, Jeantet R, Schuck P, Croguennec T (2011) Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins. Food Chem 129:110–116

    Article  CAS  Google Scholar 

  • Gulzar M, Lechevalier V, Bouhallab S, Croguennec T (2012) The physicochemical parameters during dry heating strongly influence the gelling properties of whey proteins. J Food Eng 112:296–303

    Article  CAS  Google Scholar 

  • Gulzar M, Bouhallab S, Jardin J, Briard-Bion V, Croguennec T (2013) Structural consequences of dry heating on alpha-lactalbumin and beta-lactoglobulin at pH 6.5. Food Res Int 51:899–906

    Article  CAS  Google Scholar 

  • Guyomarc’h F (2006) Formation of heat-induced protein aggregates in milk as a means to recover the whey protein fraction in cheese manufacture, and potential of heat-treating milk at alkaline pH values in order to keep its rennet coagulation properties. A review. Lait 86:1–20

    Article  CAS  Google Scholar 

  • Guyomarc’h F, Mahieux O, Renan M, Chatriot M, Gamerre V, Famelart M-H (2007a) Changes in the acid gelation of skim milk as affected by heat-treatment and alkaline pH conditions. Lait 87:119–137

    Article  CAS  Google Scholar 

  • Guyomarc’h F, Renan M, Chatriot M, Gamerre V, Famelart M-H (2007b) Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates. J Agric Food Chem 55:10986–10993

    Article  CAS  Google Scholar 

  • Guyomarc’h F, Nono M, Nicolai T, Durand D (2009) Heat-induced aggregation of whey proteins in the presence of kappa-casein or sodium caseinate. Food Hydrocoll 23:1103–1110

    Article  CAS  Google Scholar 

  • Hendrix T, Griko YV, Privalov PL (2000) A calorimetric study of the influence of calcium on the stability of bovine alpha-lactalbumin. Biophys Chem 84:27–34

    Article  CAS  Google Scholar 

  • Hoffmann MAM, van Mil P (1999) Heat-induced aggregation of beta-lactoglobulin as a function of pH. J Agric Food Chem 47:1898–1905

    Article  CAS  Google Scholar 

  • Jayat D, Gaudin JC, Chobert JM, Burova TV, Holt C, McNae I, Sawyer L, Haertle T (2004) A recombinant C121S mutant of bovine beta-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agents and heating. Biochemistry (Mosc) 43:6312–6321

    Article  CAS  Google Scholar 

  • Jean K, Renan M, Famelart MH, Guyomarc’h F (2006) Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. Int Dairy J 16:303–315

    Article  CAS  Google Scholar 

  • Kavanagh GM, Clark AH, Gosal WS, Ross-Murphy SB (2000) Heat-induced gelation of beta-lactoglobulin/alpha-lactalbumin blends at pH 3 and pH 7. Macromolecules 33:7029–7037

    Article  CAS  Google Scholar 

  • Kitabatake N, Wada R, Fujita Y (2001) Reversible conformational change in beta-lactoglobulin A modified with N-ethylmaleimide and resistance to molecular aggregation on heating. J Agric Food Chem 49:4011–4018

    Article  CAS  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine beta-lactoglobulin: evidence for a function? J Mol Biol 318:1043–1055

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Krebs MRH, Bromley EHC, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149(1):30–37

  • Lakemond CMM, Van Vliet T (2008a) Acid skim milk gels: the gelation process as affected by preheating pH. Int Dairy J 18:574–584

    Article  CAS  Google Scholar 

  • Lakemond CMM, Van Vliet T (2008b) Rheological properties of acid skim milk gels as affected by the spatial distribution of the structural elements and the interaction forces between them. Int Dairy J 18:585–593

    Article  CAS  Google Scholar 

  • Lara C, Adamcik J, Jordens S, Mezzenga R (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12:1868–1875

    Article  CAS  Google Scholar 

  • Le Maux S, Giblin L, Croguennec T, Bouhallab S, Brodkorb A (2012) Beta-lactoglobulin as a molecular carrier of linoleate: characterization and effects on intestinal epithelial cells in vitro. J Agric Food Chem 60:9476–9483

    Article  CAS  Google Scholar 

  • Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T (2014) Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Dairy Sci Technol 94:409–426

    Article  CAS  Google Scholar 

  • Le TT, El-Bakry M, Neirynck N, Bogus M, Hoa HD, van der Meeren P (2007) Hydrophilic lecithins protect milk proteins against heat-induced aggregation. Colloids Surf B: Biointerfaces 60:167–173

    Article  CAS  Google Scholar 

  • Leonil J, Henry G, Jouanneau D, Delage M-M, Forge V, Putaux J-L (2008) Kinetics of fibril formation of bovine k-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280

    Article  CAS  Google Scholar 

  • Lucey JA, Tamehana M, Singh H, Munro PA (1998) Effect of interactions between denatured whey proteins and casein micelles on the formation and rheological properties of acid skim milk gels. J Dairy Res 65:555–567

    Article  CAS  Google Scholar 

  • Mattison KW, Dubin PL, Brittain IJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830–3836

    Article  CAS  Google Scholar 

  • Mela I, Aumaitre E, Williamson A-M, Yakubov GE (2010) Charge reversal by salt-induced aggregation in aqueous lactoferrin solutions. Colloids Surf B: Biointerfaces 78:53–60

    Article  CAS  Google Scholar 

  • Menard O, Camier B, Guyomarc’h F (2005) Effect of heat treatment at alkaline pH on the rennet coagulation properties of skim milk. Lait 85:515–526

    Article  CAS  Google Scholar 

  • Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution. J Mol Biol 274:222–236

    Article  CAS  Google Scholar 

  • Morand M, Guyomarc’h F, Famelart MH (2011a) How to tailor heat-induced whey protein/kappa-casein complexes, as a means to investigate the acid gelation of milk—a review. Dairy Sci Technol 91:97–126

    Article  CAS  Google Scholar 

  • Morand M, Guyomarc’h F, Pezennec S, Famelart MH (2011b) On how k-casein affects the interactions between the heat-induced whey protein/k-casein complexes and the casein micelles during the acid gelation of skim milk. Int Dairy J 21:670–678

    Article  CAS  Google Scholar 

  • Morand M, Dekkari A, Guyomarc’h F, Famelart M-H (2012a) Increasing the hydrophobicity of the heat-induced whey protein complexes improves the acid gelation of skim milk. Int Dairy J 25:103–111

    Article  CAS  Google Scholar 

  • Morand M, Guyomarc’h F, Famelart MH (2012b) Changing the isoelectric point of the heat-induced whey protein complexes affect the acid gelation of skim milk. Int Dairy J 23:9–17

    Article  CAS  Google Scholar 

  • Moro A, Gatti C, Delorenzi N (2001) Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. J Agric Food Chem 49:4784–4789

    Article  CAS  Google Scholar 

  • Mudgal P, Daubert CR, Foegeding EA (2009) Cold-set thickening mechanism of beta-lactoglobulin at low pH: concentration effects. Food Hydrocoll 23:1762–1770

    Article  CAS  Google Scholar 

  • Nguyen NHA (2014) A comprehensive study on the relative importance of disulphide and non-covalent interactions between proteins on the heat-induced aggregation and functional properties of acid milk gels, PhD thesis, Massey University, Albany.

  • Nguyen NHA, Wong M, Anema SG, Havea P, Guyomarch F (2012) Effects of adding low levels of a disulfide reducing agent on the disulfide interactions of beta-lactoglobulin and kappa-casein in skim milk. J Agric Food Chem 60:2337–2342

    Article  CAS  Google Scholar 

  • Nguyen NHA, Anema SG, Havea P, Guyomarc'h F, Wong M (2013a) Effect of adding low levels of β-mercaptoethanol on the disulphide bonds of κ-casein and β-lactoglobulin solutions. Int Dairy J 26:78–82

    Article  CAS  Google Scholar 

  • Nguyen NHA, Wong M, Havea P, Guyomarc'h F, Anema SG (2013b) The protein interactions and rheological properties of skim milk heated in the presence of low levels of reducing agent. Food Chem 138:1604–1609

    Article  CAS  Google Scholar 

  • Nguyen NHA, Wong M, Guyomarc’h F, Havea P, Anema SG (2014) Effects of non-covalent interactions between the milk proteins on the rheological properties of acid gels. Int Dairy J 37:57–63

    Article  CAS  Google Scholar 

  • Nicolai T, Durand D (2013) Controlled food protein aggregation for new functionality. Curr Opin Colloid Interface Sci 18:249–256

    Article  CAS  Google Scholar 

  • Nicolai T, Britten M, Schmitt C (2011) Beta-lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocoll 25:1945–1962

    Article  CAS  Google Scholar 

  • Papiz M, Sawyer L, Eliopoulos E, North ACT, Findlay JBC, Sivaprasadaroa R, Jones TA, Newcomer ME, Kraulis PJ (1986) The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385

    Article  CAS  Google Scholar 

  • Perez M, Devillegas C, Sanchez L, Aranda P, Ena JM, Calvo M (1989) Interaction of fatty-acids with beta-lactoglobulin and albumin from ruminant milk. J Biochem (Tokyo) 106:1094–1097

    CAS  Google Scholar 

  • Phan-Xuan T, Durand D, Nicolai T (2013) Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules 14(6):1980–1989

  • Phan-Xuan T, Durand D, Nicolai T, Donato L, Schmitt C, Bovetto L (2014) Heat induced formation of beta-lactoglobulin microgels driven by addition of calcium ions. Food Hydrocoll 34:227–235

    Article  CAS  Google Scholar 

  • Pinto MDS, Bouhallab S, De Carvalho AF, Henry G, Putaux J-L, Léonil J (2012) Glucose slows down the heat-induced aggregation of beta-lactoglobulin at neutral pH. J Agric Food Chem 60:1335–1335

    Article  CAS  Google Scholar 

  • Pinto MS, Leonil J, Henry G, Cauty C, Carvalho AF, Bouhallab S (2014) Heating and glycation of beta-lactoglobulin and beta-casein: aggregation and in vitro digestion. Food Res Int 55:70–76

    Article  CAS  Google Scholar 

  • Qi XL, Holt C, McNulty D, Clarke DT, Brownlow S, Jones GR (1997) Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem J 324:341–346

    Article  CAS  Google Scholar 

  • Sawyer L, Kontopidis G (2000) The core lipocalin, bovine beta-lactoglobulin. Biochim Biophys Acta Protein Struct Mol Enzymol 1482:136–148

    Article  CAS  Google Scholar 

  • Schmitt C, Bovay C, Vuilliomenet A-M, Rouvet M, Bovetto L, Barbar R, Sanchez C (2009) Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25:7899–7909

    Article  CAS  Google Scholar 

  • Tavares GM, Croguennec T, Carvalho AF, Bouhallab S (2014) Milk proteins as encapsulation devices and delivery vehicles: applications and trends. Trends Food Sci Technol 37:5–20

    Article  CAS  Google Scholar 

  • Vasbinder AJ, Alting AC, Visschers RW, de Kruif CG (2003) Texture of acid milk gels: formation of disulfide cross-links during acidification. Int Dairy J 13:29–38

    Article  CAS  Google Scholar 

  • Vasbinder AJ, van de Velde F, de Kruif CG (2004) Gelation of casein-whey protein mixtures. J Dairy Sci 87:1167–1176

    Article  CAS  Google Scholar 

  • Yan Y, Seeman D, Zheng B, Kizilay E, Xu Y, Dubin PL (2013) pH-dependent aggregation and disaggregation of native beta-lactoglobulin in low salt. Langmuir 29:4584–4593

    Article  CAS  Google Scholar 

  • Yong Y, Foegeding E (2010) Caseins: utilizing molecular chaperone properties to control protein aggregation in foods. J Agric Food Chem 58:685–693

    Article  CAS  Google Scholar 

  • Zhou P, Liu X, Labuza TP (2008) Moisture-induced aggregation of whey proteins in a protein/buffer model system. J Agric Food Chem 56:2048–2054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Croguennec.

Additional information

This paper is part of the special issue dedicated to the 10th anniversary of the INRA-Agrocampus Ouest joint research unit.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guyomarc’h, F., Famelart, MH., Henry, G. et al. Current ways to modify the structure of whey proteins for specific functionalities—a review. Dairy Sci. & Technol. 95, 795–814 (2015). https://doi.org/10.1007/s13594-014-0190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-014-0190-5

Keywords

Navigation