Dairy Science & Technology

, Volume 94, Issue 3, pp 205–224 | Cite as

Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins

  • Zeineb Jrad
  • Halima El Hatmi
  • Isabelle Adt
  • Jean-Michel Girardet
  • Céline Cakir-Kiefer
  • Julien Jardin
  • Pascal Degraeve
  • Touhami Khorchani
  • Nadia Oulahal
Original Paper


Camel milk and colostrum are known to be a rich source of bioactive proteins. Camel milk, colostrum and colostral whey proteins were successively hydrolysed by pepsin and pancreatin using an in vitro protocol mimicking gastro-intestinal digestion. The degradation of proteins was characterised by electrophoresis and reversed-phase ultra-high performance liquid chromatography. Two whey proteins, α-lactalbumin and immunoglobulins G, were more resistant to the digestive proteolytic enzymes than other camel milk and colostrum proteins. Undigested and digested samples were assayed for their antioxidant, angiotensin I-converting enzyme inhibitory and antimicrobial properties. Camel colostrum, colostral whey and milk proteins had unveiled angiotensin I-converting enzyme (ACE) inhibitory activity following in vitro enzymatic digestion and a higher free radical scavenging activity than before their digestion. Moreover, Escherichia coli XL1 blue and Listeria innocua LRGIA01 cells growth were both inhibited by undigested and digested samples, suggesting that antimicrobial proteins resisted to the action of digestive enzymes or that antimicrobial fragments of camel milk and colostrum proteins were released or both. After pepsin and pancreatin hydrolysis, camel milk and colostrum proteins digests still had an antibacterial activity and their antioxidative and ACE-inhibitory activity even increased, suggesting that bioactive fragments of camel milk and colostrum proteins such as antioxidative and ACE-inhibitory peptides were released. Among 181 peptides identified by tandem mass spectrometry, 25 were homologous to known bioactive peptides, particularly with ACE inhibitors and free radical scavengers.


Angiotensin I-converting enzyme inhibition Antibacterial activity Antioxidant activity Camel colostrum proteins Camel milk proteins Digestive enzymes 



The authors would like to acknowledge the Ministère des Affaires Etrangères (France) for supporting Dr Halima El Hatmi’s stays (SSHN grants) in BioDyMIA (Université Lyon 1, France) and UR AFPA (Université de Lorraine, France) laboratories. The authors also thank IRA (Medenine, Tunisia) and University of Gabes (Tunisia) for supporting Mrs Zeineb Jrad’s stay in BioDyMIA laboratory, Dr Faïza Zidane (UR AFPA) for her good advices in the ACE-inhibitory activity assays and Mrs Claire Soligot-Hognon (UR AFPA) for technical assistance in UHPLC.


  1. Abd El-Gawad IA, El-Sayed EM, Mahfouz MB, Abd El-Salam AM (1996) Changes of lactoferrin concentration in colostrum and milk from different species. Egypt J Dairy Sci 24:297–308Google Scholar
  2. Beg OU, Bahr-Lindström HV, Zaidi ZH, Jörnvall H (1985) The primary structure of α-lactalbumin from camel milk. Eur J Biochem 147:233–239CrossRefGoogle Scholar
  3. Benkerroum N, Makkaoui B, Bennani N, Kamal H (2004) Antimicrobial activity of camel’s milk against pathogenic strains of Escherichia coli and Listeria monocytogenes. Int J Dairy Technol 57:39–43CrossRefGoogle Scholar
  4. Chiba H, Tani F, Yoshikawa M (1989) Opioid antagonist peptides derived from κ-casein. J Dairy Res 56:363–366CrossRefGoogle Scholar
  5. El-Agamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R (1992) Antibacterial and antiviral activity of camel milk proteins. J Dairy Res 59:169–175CrossRefGoogle Scholar
  6. El Hatmi H, Levieux A, Levieux D (2006) Camel (Camelus dromedarius) immunoglobulin G, α-lactalbumin, serum albumin and lactoferrin in colostrum and milk during the early post partum period. J Dairy Res 73:288–293CrossRefGoogle Scholar
  7. El Hatmi H, Girardet JM, Gaillard JL, Yahyaoui MH, Attia H (2007) Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Rumin Res 70:267–271CrossRefGoogle Scholar
  8. El Hatmi H (2007) Lait et colostrum camelin: évolution de la physico-chimie et de la fraction protéique soluble en fonction du stade de lactation. [Camel milk and colostrum: monitoring of physico-chemical properties and of the water-soluble proteins as a function of milking stage] PhD thesis, University of Sfax, Tunisia, pp 139Google Scholar
  9. Farah Z (1993) Composition and characteristics of camel milk. J Dairy Res 60:603–626CrossRefGoogle Scholar
  10. Farnaud S, Evans RW (2003) Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405CrossRefGoogle Scholar
  11. Frister H, Meisel H, Schlimme E (1988) OPA method modified by use of N, N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresenius J Anal Chem 330:631–633CrossRefGoogle Scholar
  12. Hayes M, Stanton C, Slattery H, O'Sullivan O, Hill C, Fitzgerald GF, Ross RP (2007) Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl Environ Microbiol 73:4658–4667CrossRefGoogle Scholar
  13. Hernandez-Ledesma B, Amigo L, Ramos M, Recio I (2004) Release of angiotensin converting enzyme-inhibitory peptides by simulated gastrointestinal digestion of infant formulas. Int Dairy J 14:889–898CrossRefGoogle Scholar
  14. Hernández-Ledesma B, Contreras MM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165:23–35CrossRefGoogle Scholar
  15. Hinz K, O’Connor PM, Huppertz T, Ross RP, Kelly AL (2012) Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. J Dairy Res 79:185–191CrossRefGoogle Scholar
  16. Holt LJ, Herring C, Jespens LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490CrossRefGoogle Scholar
  17. Jäkälä P, Vappatalo H (2010) Antihypertensive peptides from milk proteins. Pharmaceuticals 3:251–272CrossRefGoogle Scholar
  18. Jolles P, Levy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A, Dunn FW, Caen JP (1986) Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from κ-casein on platelet function. Eur J Biochem 158:379–382CrossRefGoogle Scholar
  19. Kansci G, Genot C, Meynier A, Gaucheron F, Chobert JM (2004) β-Caseinophosphopeptide (f1-25) confers on β-casein tryptic hydrolysate an antioxidant activity during iron/ascorbate-induced oxidation of liposomes. Lait 84:449–462CrossRefGoogle Scholar
  20. Kappeler SR, Heuberger C, Farah Z, Puhan Z (2004) Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland. J Dairy Sci 87:2660–2668CrossRefGoogle Scholar
  21. Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Design 13:829–843CrossRefGoogle Scholar
  22. Kouadio IA, Oulahal N, Nguyen-Thi P, Adt I, Degraeve P (2011) Study of the antimicrobial activities of Solanum indicum ssp. Distichum (Shumach and Thonning 1827) fruits (“gnangnan” berries) from a tropical humid zone (Côte d’Ivoire). Int J Biol Chem Sci 5:1190–1200Google Scholar
  23. Ku HK, Lim HM, Oh KH, Yang HJ, Jeong JS, Kim SK (2013) Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models. Anal Biochem 434:178–180CrossRefGoogle Scholar
  24. Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–579CrossRefGoogle Scholar
  25. Lauwereys M, Ghahroudi MA, Desmyter A, Kinne J, Holzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17:3512–3520CrossRefGoogle Scholar
  26. Ochirkhuyag B, Chobert J-M, Dalgalarrondo M, Choiset IY, Haertlé T (1998) Characterization of whey proteins from Mongolian yak, khainak, and bactrian camel. J Food Biochem 22:105–124CrossRefGoogle Scholar
  27. Parrot S, Degraeve P, Curia C, Martial-Gros A (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung/Food 47:87–94CrossRefGoogle Scholar
  28. Quan S, Tsuda H, Miyamoto T (2008) Angiotensin I-converting enzyme inhibitory peptides in skim milk fermented with Lactobacillus helveticus 130B4 from camel milk in Inner Mongolia, China. J Sci Food Agric 88:2688–2692CrossRefGoogle Scholar
  29. Qureshi TM, Vegarud GE, Abrahamsen RK, Skeie S (2013) Angiotensin I-converting enzyme-inhibitory activity of the Norwegian autochthonous cheeses Gamalost and Norvegia after in vitro human gastrointestinal digestion. J Dairy Sci 96:838–853CrossRefGoogle Scholar
  30. Re R, Pelligrini N, Proteggente A, Pannala A, Yang M, Price-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radical Biol Med 26:1231–1237CrossRefGoogle Scholar
  31. Ricci I, Artacho R, Ollala M (2010) Milk protein peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity. Crit Rev Food Sci Nutr 50:390–402CrossRefGoogle Scholar
  32. Robert V, Auchere D, Boudier JF, Gaillard JL, Monnet V, Tauzin J, Grynberg A (2004) Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. J Agric Food Chem 52:6923–6931CrossRefGoogle Scholar
  33. Rodriguez LE, Urquiza M, Ocampo M, Suarez J, Curtidor H, Guzman F, Vargas LE, Triviños M, Rosas M, Patarroyo ME (2000) Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitology 120:225–235CrossRefGoogle Scholar
  34. Rousseau-Ralliard D, Goirand F, Tardivel S, Lucas A, Algaron F, Mollé D, Robert MC, Razaname A, Mutter M, Juillerat MA (2011) Inhibitory effect of αs1- and αs2-casein hydrolysates on angiotensin I-converting enzyme in human endothelial cells in vitro, rat aortic tissue ex vivo, and renovascular hypertensive rats in vivo. J Dairy Sci 93:2906–2921CrossRefGoogle Scholar
  35. Sadat L, Cakir-Kiefer C, N’Negue MA, Gaillard JL, Girardet JM, Miclo L (2011) Isolation and identification of antioxidant peptides from bovine α-lactalbumin. Int Dairy J 21:214–221CrossRefGoogle Scholar
  36. Salami M, Yousefi R, Ehsani MR, Dalgalarrondo M, Chobert JM, Haertlé T, Razavi SH, Saboury AA, Niasari-Naslaji A, Moosavi-Movahedi AA (2008) Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int Dairy J 18:1097–1102CrossRefGoogle Scholar
  37. Salami M, Yousefi R, Ehsani MR, Razavi SH, Chobert JM, Haertlé T, Saboury AA, Atri MS, Niasari-Naslaji A, Ahmad F, Moosavi-Movahedi AA (2009) Enzymatic digestion and antioxidant activity of the native and molten globule states of α-lactalbumin: possible significance for use in infant formula. Int Dairy J 19:518–523CrossRefGoogle Scholar
  38. Salami M, Moosavi-Movahedi AA, Ehsani MR, Yousefi R, Haertlé T, Chobert JM, Razavi SH, Henrich R, Balalaie S, Ebadi SA, Pourtakdoost S, Niasari-Naslaji A (2010) Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. J Agric Food Chem 58:3297–3302CrossRefGoogle Scholar
  39. Salami M, Moosavi-Movahedi AA, Moosavi-Movahedi F, Ehsani MR, Yousefi R, Fahadi M, Niasari-Naslaji A, Saboury AA, Chobert JM, Haertlé T (2011) Biological activity of camel milk casein following enzymatic digestion. J Dairy Res 78:471–487CrossRefGoogle Scholar
  40. Shamsia SM (2009) Nutritional and therapeutic properties of camel and human milks. Int J Genet Mol Biol 1:52–58Google Scholar
  41. Sohn CH, Chung CK, Yin S, Ramachandran P, Loo JA, Beauchamp JL (2009) Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J Am Chem Soc 131:5444–5459CrossRefGoogle Scholar
  42. Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131CrossRefGoogle Scholar
  43. Tauzin J, Miclo L, Gaillard JL (2002) Angiotensin I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αs2-casein. FEBS Lett 531:369–374CrossRefGoogle Scholar
  44. Tan YV, Couvineau A, Van Rampelbergh J, Laburthe M (2003) Photoaffinity labeling demonstrates physical contact between vasoactive intestinal peptide and the N-terminal ectodomain of the human VPAC1 receptor. J Biol Chem 278:36531–36536CrossRefGoogle Scholar
  45. Tanabe S, Isobe N, Miyauchi E, Kobayashi S, Suzuki M, Oda M (2006) Identification of a peptide in enzymatic hydrolyzate of cheese that inhibits ovalbumin permeation in Caco-2 cells. J Agric Food Chem 54:6904–6908CrossRefGoogle Scholar
  46. Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91:52–55CrossRefGoogle Scholar
  47. Zhang H, Yao J, Zhao D, Liu H, Li J, Gu M (2005) Changes in chemical composition of Alxa bactrian camel milk during lactation. J Dairy Sci 88:3402–3410CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Zeineb Jrad
    • 1
    • 2
  • Halima El Hatmi
    • 1
    • 2
  • Isabelle Adt
    • 3
  • Jean-Michel Girardet
    • 4
    • 5
  • Céline Cakir-Kiefer
    • 4
    • 5
  • Julien Jardin
    • 6
    • 7
  • Pascal Degraeve
    • 3
  • Touhami Khorchani
    • 1
  • Nadia Oulahal
    • 3
  1. 1.Laboratoire d’Elevage et Faune SauvageInstitut des Régions Arides de MédenineMédenineTunisia
  2. 2.Université de Gabes, Département agro-alimentaire, Institut Supérieur de Biologie Appliquée de MédenineGabesTunisia
  3. 3.Université Lyon 1, BioDyMIA* (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Equipe Mixte d’Accueil n°3733 ISARA LyonUniversité de LyonBourg en BresseFrance
  4. 4.Université de Lorraine, UR AFPA (Unité de Recherche Animal et Fonctionnalités des Produits Animaux), Equipe PB2P (Protéolyse & Biofonctionnalités des Protéines et des Peptides)Vandœuvre-lès-NancyFrance
  5. 5.INRA, UR AFPA Unité Sous Contrat 340Vandœuvre-lès-NancyFrance
  6. 6.INRA, UMR1253 Science et Technologie du Lait et de l’ŒufRennesFrance
  7. 7.Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l’ŒufRennesFrance

Personalised recommendations