Skip to main content
Log in

Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters

  • Original Paper
  • Published:
Dairy Science & Technology

Abstract

A previous study showed the ability of old-style cheese starters to produce large amounts of γ-aminobutyric acid (GABA). This work reports the identification of GABA-producing strains and the effect of the main cheese matrix parameters (NaCl, glutamic acid, pH, oxygen) having an influence on GABA production. Out of a total of 50 individual bacterial strains contained in two old-style cheese starters, nine were able to produce GABA and were identified as either Lactococcus lactis ssp. lactis or L. lactis ssp. lactis biovar diacetylactis. Strains ULAAC-A13 and ULAAC-A23 were able to produce up to 500 mg of GABA per 100 mL of fermented milk containing 2% NaCl and 367 mg per 100 mL of glutamate. Moreover, the low residual glutamate concentration indicates the almost total conversion of glutamate into GABA. GABA was also detected in four commercial cheeses at concentrations varying from 10 to 97 mg of GABA per 30 g of cheese and at a concentration of 29 mg of GABA per 30 g of a cheese slurry ripened with ULAAC-A old-style starter. In that cheese slurry, GABA concentrations were above the levels previously proven to be effective for lowering blood pressure in humans. Both individual GABA-producing strains or the old-style starters containing the GABA strains seem to be promising for GABA production in hard or semi-hard cheeses with prevailing conditions for GABA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aoki H, Furuya Y, Endo Y, Fujimoto K (2003a) Effect of γ-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci Biotechnol Biochem 67:1806–1808

    Article  CAS  Google Scholar 

  • Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K (2003b) The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67:1018–1023

    Article  CAS  Google Scholar 

  • Bearson S, Bearson B, Foster JW (1997) Acid stress response in enterobacteria. FEMS Microbiol Lett 147:173–180

    Article  CAS  Google Scholar 

  • Beimfohr C, Ludwig W, Schleifer KH (1997) Rapid genotypic differentiation of Lactococcus lactis subspecies and biovar. Syst Appl Microbiol 20:216–221

    Article  Google Scholar 

  • Budin-Verneuil A, Maguin E, Auffray Y, Ehrlich SD, Pichereau V (2004) An essential role for arginine catabolism in the acid tolerance of Lactococcus lactis MG1363. Lait 84:61–68

    Article  CAS  Google Scholar 

  • Cotter PD, Gahan CGM, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475

    Article  CAS  Google Scholar 

  • Elliott KAC, Hobbiger F (1959) Gamma aminobutyric acid: circulatory and respiratory effects in different species; re-investigation of the anti-strychnine action in mice. J Physiol 146:70–84

    CAS  Google Scholar 

  • Farkye NY, Madkor SA, Hatkins HG (1995) Proteolytic abilities of some lactic acid bacteria in a model cheese system. Int Dairy J 5:715–725

    Article  CAS  Google Scholar 

  • Harper WJ, Kristoffersen T (1970) Biochemical aspects of flavor development in Cheddar cheese slurries. J Agric Food Chem 18:563–566

    Article  CAS  Google Scholar 

  • Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. British J Nutr 92:411–417

    Article  CAS  Google Scholar 

  • Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H (2003) Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57:490–495

    Article  CAS  Google Scholar 

  • Klijn N, Weerkamp AH, de Vos WM (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61:2771–2774

    CAS  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S, Momose H, Toshinori K (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  • Kono I, Himeno K (2000) Changes in γ-aminobutyric acid content during beni-koji making. Biosci Biotechnol Biochem 64:617–619

    Article  CAS  Google Scholar 

  • Kuchroo CN, Fox PF (1982) Soluble nitrogen in Cheddar cheese: comparison of extraction procedures. Milchwissenschaft 37:331–335

    CAS  Google Scholar 

  • Lacerda JEC, Campos RR, Araujo GC, Andreatta-Van Leyen S, Lopes OU, Guertzenstein PG (2003) Cardiovascular responses to microinjections of GABA or anesthetics into the rostral ventrolateral medulla of conscious and anesthetized rats. Braz J Med Biol Res 36:1269–1277

    Article  CAS  Google Scholar 

  • Lacroix N, St-Gelais D, Champagne CP, Fortin J, Vuillemard JC (2010) Characterization of aromatic properties of old-style cheese starters. J Dairy Sci 93:3427–3441

    Article  CAS  Google Scholar 

  • Leenhouts KJ, Kok J, Venema G (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl Environ Microbiol 56:2726–2735

    CAS  Google Scholar 

  • Minervini F, Bilancia MT, Siragusa S, Gobbetti M, Caponio F (2009) Fermented goats’ milk produced with selected multiple starters as a potentially functional food. Food Microbiol 26:559–564

    Article  CAS  Google Scholar 

  • Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I (1998) Production of γ-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci 81:1486–1491

    Article  CAS  Google Scholar 

  • Nomura M, Kimoto H, Someya Y, Suzuki I (1999a) Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int J Syst Bacteriol 49:163–166

    Article  Google Scholar 

  • Nomura M, Kobayashi M, Ohmomo S, Okamoto T (2000) Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 66:2235–2237

    Article  CAS  Google Scholar 

  • Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H (1999b) Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 145:1375–1380

    Article  CAS  Google Scholar 

  • O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215

    Google Scholar 

  • Olier M, Rousseaux S, Piveteau P, Lemaître JP, Rousset A, Guzzo J (2004) Screening of glutamate decarboxylase activity and bile salt resistance of human asymptomatic carriage, clinical, food, and environmental isolates of Listeria monocytogenes. Int J Food Microbiol 93:87–99

    Article  CAS  Google Scholar 

  • Olson ER (1993) Influence of pH on bacterial gene expression. Mol Microbiol 8:5–14

    Article  CAS  Google Scholar 

  • Park KB, Ji GE, Park MS, Oh SH (2005) Expression of rice glutamate decarboxylase in Bifidobacterium longum enhances γ-aminobutyric acid production. Biotechnol Lett 27:1681–1684

    Article  CAS  Google Scholar 

  • Park KB, Oh SH (2007) Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technol 98:1675–1679

    Article  CAS  Google Scholar 

  • Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  CAS  Google Scholar 

  • Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    Article  CAS  Google Scholar 

  • Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176:1729–1737

    CAS  Google Scholar 

  • Small PLC, Waterman SR (1998) Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214–216

    Article  CAS  Google Scholar 

  • Stanton HC (1963) Mode of action of gamma amino butyric acid on the cardiovascular system. Arch Int Pharmacodyn Ther 143:195–204

    CAS  Google Scholar 

  • Takahashi H, Tiba M, Iino M, Takayasu T (1955) The effect of γ-aminobutyric acid on blood pressure. Jpn J Physiol 5:334–341

    Article  CAS  Google Scholar 

  • Tsukatani T, Higuchi T, Matsumoto K (2005) Enzyme-based microtiter plate assay for γ-aminobutyric acid: application to the screening of γ-aminobutyric acid-producing lactic acid bacteria. Anal Chim Acta 540:293–297

    Article  CAS  Google Scholar 

  • Ueno Y, Hayakawa K, Takahashi S, Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotech Biochem 61:1168–1171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Fonds québécois de la recherche sur la nature et les technologies, the Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Novalait, Inc., and Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Vuillemard.

About this article

Cite this article

Lacroix, N., St-Gelais, D., Champagne, C.P. et al. Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci. & Technol. 93, 315–327 (2013). https://doi.org/10.1007/s13594-013-0127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-013-0127-4

Keywords

Navigation