Dairy Science & Technology

, Volume 92, Issue 5, pp 569–591 | Cite as

Soft goats’ cheese enriched with polyunsaturated fatty acids by dietary supplementation: manufacture, physicochemical and sensory characterisation

  • Jean-Yves Gassi
  • Mathilde Thève
  • Eric Beaucher
  • Bénédicte Camier
  • Marie-Bernadette Maillard
  • Florence Rousseau
  • Lara Lebœuf-Schneider
  • Emmanuel Lepage
  • Frédéric Gaucheron
  • Christelle Lopez
Original Paper

Abstract

Modifying the lipid composition of milk and dairy products, to improve their nutritional properties, without negatively altering their technological, sensorial and functional qualities, constitutes a challenge for the dairy sector. This study was performed to increase the polyunsaturated fatty acids (PUFA) and decrease the saturated fatty acids (SFA) content of goats’ milk, under real field conditions and production, by means of altering the animals diet. The effect of these changes were characterised during the manufacture of soft ripened cheese and assessing the impact on physicochemical and sensorial characteristics. Two groups of 30 crossbreed Alpine dairy goats were fed either a control diet or a diet supplemented with oilseeds providing 50.4 g UFA.goat−1.day−1 or 69.6 g UFA.goat−1.day−1 which supplied respectively 1.4 and 2.4 % of alpha-linolenic acid (ALA). Supplementing the feed of dairy goats with PUFA was shown to have beneficial effects on the FA composition of goat’s milks and cheeses: (1) an increase in the content of ALA (18:3n-3; from 0.78 to 1.78 g.100 g−1 of total FA) and rumenic acid (main CLA; from 0.75 to 1.27 g.100 g−1 of total FA); (2) a decrease in the n-6/n-3 PUFA ratio (from 4.6 to 2) and the overall SFA content (from 66 to 60.4 g.100 g−1 of total FA). The corrected cheese yield was higher for the supplemented milks (16.3 %) in comparison to the control milks (15.4 %). Both cheeses showed a similar evolution in the levels of proteolysis and lipolysis with no flavour defects being detected. Cheese sensory scores for the two types of cheeses were similar. Hence, healthier goats’ milk and cheese FA profiles were obtained with good sensorial characteristics.

Keywords

Milk Goats’ cheese Fatty acid Fat supplementation Sensory analysis 

富含多不饱和脂肪酸软质山羊奶干酪的特性研究

摘要 :

调整乳和乳制品中脂质组成,提高其营养特性,并保持乳制品的加工、感官和功能特性是当今的研究热点。本研究是在保持生产工艺不变的前提下,通过改变动物饲料的组成,以增加山羊奶中多不饱和脂肪酸含量和减少饱和脂肪酸的含量,并评价饲料组成变化对软质成熟干酪的物化和感官特性的影响。将30只杂交的阿尔卑斯奶山羊分成两组:一组为对照组,另一组每天每只山羊提供含50.4g不饱和脂肪酸的油菜籽和1.4%的α-亚麻酸(ALA),或者提供含69.6g不饱和脂肪酸的油菜籽和2.4%的α-亚麻酸。饲料中多不饱和脂肪酸含量显著地影响羊奶和羊奶干酪的脂肪酸组成:(1)ALA(18:3n-3)的含量从0.78 g.100 g−1(总脂肪酸)增加到1.78 g.100 g−1(总脂肪酸);亚油酸(主要成分CLA)的含量从0.75 g.100 g−1增加到1.27 g.100 g−1;(2) 多不饱和脂肪酸n-6/n-3比值从4.6下降到2,以及总饱和脂肪酸从66 g.100 g−1下降到60.4 g.100 g−1。补充过饲料的山羊奶加工成干酪的产量为16.3 %,高于对照组的15.4 %。两种干酪的蛋白酶解和脂肪酶解的变化相似,并且没有检测出干酪风味缺陷。两种类型干酪的感官风味分数相似。因此,通过补充含有多不饱和脂肪酸的饲料,能够获得有益于人体健康的山羊奶和更合理脂肪酸组成的干酪,同时干酪还具有良好的感官特性。

关键词

奶 山羊奶干酪 脂肪酸 补充脂肪 感官分析 

References

  1. Attaie R, Richter RL (2000) Size distribution of fat globules in goat milk. J Dairy Sci 83:940–944CrossRefGoogle Scholar
  2. Blasi F, Montesano D, De Angelis M, Maurizi A, Ventura F, Cossignani L, Simonetti MS, Damiani P (2008) Results of stereospecific analysis of triaylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J Food Compos Anal 21:1–7CrossRefGoogle Scholar
  3. Briard-Bion V, Juaneda P, Richoux R, Guichard E, Lopez C (2008) Trans-C18:1 isomers in cheeses enriched in unsaturated fatty acids and manufactured with different milk fat globule sizes. J Agric Food Chem 56:9374–9382CrossRefGoogle Scholar
  4. Brulé G, Maubois JL, Fauquant J (1974) Etude de la teneur en éléments minéraux des produits obtenus lors de l'ultrafiltration du lait sur membrane. [Study of the mineral content of the products obtained during the milk ultrafiltration with membrane]. Lait 54:600–615CrossRefGoogle Scholar
  5. Carunchia Whetstine ME, Karagul-yuceer Y, Avsar YK, Drake MA (2003) Identification and quantification of character aroma components in fresh chevre-style goat cheese. J Food Sci 68:2441–2447CrossRefGoogle Scholar
  6. Chilliard Y, Ferlay A (2004) Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod Nutr Dev 44:467–492CrossRefGoogle Scholar
  7. Chilliard Y, Ferlay A, Rouel J, Lamberett G (2003) A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci 86:1751–1770CrossRefGoogle Scholar
  8. Chilliard Y, Rouel J, Ferlay A, Bernard L, Gaborit P, Raynal-Ljutovac K, Lauret A (2005). Effects of type of forage and lipid supplementation on goat milk fatty acids and sensory properties of cheeses. In: Future of the sheep and goat dairy sectors. International Dairy Federation, Brussels, pp 297–304Google Scholar
  9. Chilliard Y, Rouel J, Ferlay A, Bernard L, Gaborit P, Raynal-Ljutovac K, Lauret A, Leroux C (2006) In: Williams C, Buttriss J (eds) Optimising goat's milk and cheese fatty acid composition. Woodhead Publishing Limited, Cambridge, pp 281–312Google Scholar
  10. CNIEL (2011) L'économie Laitière en Chiffres. [The Dairy Economy in Figures]. CNIEL, ParisGoogle Scholar
  11. Collins YF, Mc Sweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866CrossRefGoogle Scholar
  12. De Jong C, Badings HT (1990) Determination of free fatty acids in milk and cheese. Procedures for extraction clean up and capillary gas chromatographic analysis. J High Resol Chromatogr 13:94–98CrossRefGoogle Scholar
  13. Gaborit P, Menard A, Morgan F (2001) Impact of ripening strains on the typical flavour of goat cheeses. Int Dairy J 11:315–325CrossRefGoogle Scholar
  14. Greyt W, Huyghebaert A (1995) Lipase-catalysed modification of milk fat. Lipid Technology 7:10–12Google Scholar
  15. Gripon JC (1993) Mould-ripened cheese. In: Fox PF (ed) Cheese, chemistry, physics and microbiology, vol 2: major cheese groups, 2nd edn. Chapman & Hall, London, pp 111–136Google Scholar
  16. Gripon JC, Desmazeaud M, Le Bars D, Bergère JL (1975) Etude du rôle des micro-organismes et de leurs enzymes dans la maturation des fromages. Influence de la présure commerciale. [Study of the role of microorganisms and their enzymes in cheese ripening. Influence of commercial rennet]. Lait 55:502–516CrossRefGoogle Scholar
  17. Grosclaude F, Martin P (1997) Casein polymorphisms in the goat. In: Proceedings of the International Dairy Federation Seminars, Palmerston North, New Zealand, session IV, pp 241–253Google Scholar
  18. Guo M, Park YW, Dixon PH, Gilmore JA, Kindstedt PS (2004) Relationship between the yield of cheese (Chevre) and chemical composition of goat milk. Small Ruminant Res 52:103–107CrossRefGoogle Scholar
  19. Haenlein GFW (2004) Goat milk in human nutrition. Small Ruminant Res 51:155–163CrossRefGoogle Scholar
  20. Hu FB, Manson JE, Willet WC (2001) Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 20:5–19Google Scholar
  21. IDF (1987) Milk, cream and evaporated milk. Determination of total solid content. Standard 21B. International Dairy Federation, BrusselsGoogle Scholar
  22. IDF (1993) Determination of total nitrogen content. Standard 20B. International Dairy Federation, BrusselsGoogle Scholar
  23. IDF (1997) Milk and milk products. Determination of fat content, standard 152A. International Dairy Federation, BrusselsGoogle Scholar
  24. ISO-IDF (2001) ISO-IDF, 2001, Milk and milk products, extraction methods for lipids and liposoluble compounds, International Standard ISO 14156-IDF 172:2001. International Dairy Federation, BrusselsGoogle Scholar
  25. ISO-IDF (2002) ISO-IDF, 2002, Milk fat, preparation of fatty acid methyl esters, International Standard ISO 15884-IDF 182:2002. International Dairy Federation, BrusselsGoogle Scholar
  26. Le Quéré JL, Pierre A, Riaublanc A, Demaizières D (1998) Characterization of aroma compounds in the volatile fraction of soft goat cheese during ripening. Lait 78:279–290CrossRefGoogle Scholar
  27. Lelievre J (1983) Influence of the casein/fat ratio in milk on the moisture in the non-fat substance in cheddar cheese. Int J Dairy Technol 36:119–120CrossRefGoogle Scholar
  28. Lopez C, Maillard MB, Briard-Bion V, Camier B, Hannon JA (2006) Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J Agric Food Chem 54:5855–5867CrossRefGoogle Scholar
  29. Lucas A, Coulon JB, Agabriel C, Chilliard Y, Rock E (2008) Relationships between the conditions of goat's milk production and the contents of some components of nutritional interest in Rocamadour cheese. Small Ruminant Res 92:106Google Scholar
  30. Lucey J, Kelly J (1994) Cheese yield. J Soc Dairy Technol 47:1–14CrossRefGoogle Scholar
  31. Michalski MC, Gassi JY, Famelart MH, Leconte N, Camier B, Michel F, Briard V (2003) The size of native milk fat globules affects physico-chemical and sensory properties of camembert cheese. Lait 83:131–143CrossRefGoogle Scholar
  32. Neveu C, Mollé D, Moreno J, Martin P, Léonil J (2002) Heterogeneity of caprine beta-casein elucidated by RP-HPLC/MS: genetic variants and phosphorylations. J Protein Chem 21:557–567CrossRefGoogle Scholar
  33. Raynal-Ljutovac K, Lagriffoul G, Paccard P, Guillet I, Chilliard Y (2008) Composition of goat and sheep milk products: an update. Small Ruminant Res 79:57–72CrossRefGoogle Scholar
  34. Raynal-Ljutovac K, Le Pape M, Gaborit P, Barrucand P (2011) French goat milk cheeses: an overview on their nutritional and sensorial characteristics and their impacts on consumers' acceptance. Small Ruminant Res 101:64–72CrossRefGoogle Scholar
  35. Remeuf F (1993) Influence du polymorphisme génétique de la caséine alpha s1 caprine sur les caractéristiques physico-chimiques et technologiques du lait. [Influence of genetic polymorphism of goat alpha s1-casein on the physico-chemical and technological properties of milk]. Lait 73:549–557CrossRefGoogle Scholar
  36. Sanz Sampelayo M, Chilliard Y, Schmidely P, Boza J (2007) Influence of type of diet on the fat constituents of goat and sheep milk. Small Ruminant Res 68:42–63CrossRefGoogle Scholar
  37. Schmidely P, Sauvant D (2001) Taux butyreux et composition de la matière grasse du lait chez les petits ruminants: effets de l'apport de matières grasses ou d'aliment concentré. [Fat content and composition of milk fat in small ruminants: effects of fat intake or feed concentrate]. Prod Anim 14:337–354Google Scholar
  38. Zeng SS, Soryal K, Fekadu B, Bah B, Popham T (2007) Predictive formulae for goat cheese yield based on milk composition. Small Ruminant Res 69:180–186CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Jean-Yves Gassi
    • 1
    • 2
  • Mathilde Thève
    • 3
  • Eric Beaucher
    • 1
    • 2
  • Bénédicte Camier
    • 1
    • 2
  • Marie-Bernadette Maillard
    • 1
    • 2
  • Florence Rousseau
    • 1
    • 2
  • Lara Lebœuf-Schneider
    • 3
  • Emmanuel Lepage
    • 3
  • Frédéric Gaucheron
    • 1
    • 2
  • Christelle Lopez
    • 1
    • 2
  1. 1.INRA, UMR 1253Science et Technologie du Lait et de l’OeufRennesFrance
  2. 2.Agrocampus-Ouest, UMR 1253Science et Technologie du Lait et de l’OeufRennesFrance
  3. 3.CCPA, ZA Nord-Est du Bois de TeillayJanzéFrance

Personalised recommendations