A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides

干酪中生物活性肽的健康和营养-综述

Abstract

This paper is a mini-review on the nutritional value of cheese with a focus on the identification of different biologically active peptides in cheese and the evidence built about their health benefits. From a nutritional point of view, cheese is a rich source of essential nutrients such as proteins, vitamins, minerals, and also short chain fatty acids that are important as part of a healthy diet. In addition, during cheese ripening, casein is hydrolyzed into a large variety of peptides by proteases and peptidases from milk, rennet, starter culture, and secondary microbial flora. Some of these peptides are structurally similar to endogenous peptides that play a crucial role in the organism as hormones, neurotransmitters, or antibiotics. Some of them can also survive gastrointestinal digestion or serve as precursors of the final peptide form. Furthermore, some of these cheese-derived peptides can interact with the same receptors than endogenous peptides and exert agonistic or antagonistic effects in the organism. This paper reviews the identification of different biologically active peptides in cheese and the evidence built about their health benefits. Activities have been mainly proven by using in vitro assays and in cell cultures, but in some cases the activity has been also assessed in animal models. In any case, there is still a long way to demonstrate the “hidden” health benefits of cheese in humans.干酪中生物活性肽的健康和营养-综述

摘要

从营养角度来看,干酪富含非常重要的营养物质,如蛋白质、维生素、矿物质和一些短链脂肪酸,这些物质是健康饮食中很重要的一部分。另外,干酪在成熟期间,酪蛋白被来自牛乳、凝乳酶、发酵剂和次级微生物菌群的蛋白酶和肽酶水解成各种各样的肽。这些肽中有的与干酪中内源肽如激素、神经递质、激素的结构相似,在有机体合成中起着关键的作用。有些肽能够以胃肠消化的形式存在或作为最后肽的前体物。另外,一些干酪衍生肽能够与结构相似的内源肽受体一起相互作用在机体中发挥竞争或拮抗的作用。本文综述了干酪中不同生物活性肽的鉴定以及对人体健康的评价。肽的生物活性主要通过采用体外细胞培养方法进行评价,但是,大多数情况下,肽的生物活性通过动物模型来评价。干酪对人类营养和健康的作用还有很多未知,有待进一步挖掘。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adamson NJ, Reynolds EC (1995) Characterisation of tryptic casein phosphopeptides prepared under industrially relevant conditions. Biotechnol Bioeng 45:196–204

    CAS  Google Scholar 

  2. Addeo F, Chianese L, Salzano A, Sacchi R, Capuccio U, Ferranti P, Malorni A (1992) Characterization of the 12 % trichloroacetic acid-insoluble oligopeptides of Parmiggiano Reggiano. J Dairy Res 59:401–411

    CAS  Google Scholar 

  3. Ardö Y, Lilbaek H, Kristiansen KR, Zakora M, Otte J (2007) Identification of large phosphopeptides from β-casein that characteristically accumulated during ripening of the semi-hard cheese Herrgård. Int Dairy J 17:513–524

    Google Scholar 

  4. Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB, Jakobsen MU, Kok FJ, Krauss RM, Lecerf JM, Legrand P, Nestel P, Risérus U, Sanders T, Sinclair A, Stender S, Tholstrup T, Willett W (2011) The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 93:684–688

    CAS  Google Scholar 

  5. Ash A, Wilbey A (2010) The nutritional significance of cheese in the UK diet. Int J Dairy Technol 63:305–319

    CAS  Google Scholar 

  6. Barba G, Russo P (2006) Dairy foods, dietary calcium and obesity: a short review of evidence. Nutr Metab Cardiovasc Dis 16:445–451

    Google Scholar 

  7. Brantl V, Teschemacher H, Blasig J, Henschen A, Lottspeich F (1981) Opioid activities of beta-casomorphins. Life Sci 28:1903–1909

    CAS  Google Scholar 

  8. Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132:2995–2998

    CAS  Google Scholar 

  9. Bennett T, Desmond A, Harrington M, McDonagh D, FitzGerald R, Flynn A, Cashman KD (2000) The effect of high intakes of casein and casein phosphopeptides on calcium absorption in the rat. Br J Nutr 83:673–680

    CAS  Google Scholar 

  10. Bouhallabb S, Cinga V, Aít-Oukhatar N, Bureau F, Neuville D, Arhan P, Maubois JL, Bouglé D (2002) Influence of various phosphopeptides of caseins on iron absorption. J Agric Food Chem 50:7127–7130

    Google Scholar 

  11. Boutrou R, Coirre E, Jardin J, Léonil (2010) Phosphorylation and coordination bond of mineral inhibit the hydrolysis of the β-casein (1–25) peptide by intestinal Brush-Border membrane enzymes. J Agric Food Chem 58:7955–7961

    CAS  Google Scholar 

  12. Brandsch M, Brust P, Neubert K, Ermisch A (1994) β-Casomorphins chemical signals of intestinal transport systems. In: Brantl H, Teschemacher H (eds) β-Casomorphins and related peptides. Recent development. VCH, Weinheim pp 207–219

  13. Bütikofer U, Meyer J, Sieber R, Walther B, Wechsler D (2008) Occurrence of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin. J Dairy Sci 91:29–38

    Google Scholar 

  14. Bütikofer U, Meyer J, Sieber R, Wechsler D (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int Dairy J 17:968–975

    Google Scholar 

  15. Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jolles P, Fiat AM (1998) Casein peptides release and passage to the blood in human during digestion of milk or yogurt. Biochimie 80:155–165

    CAS  Google Scholar 

  16. Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW (1992) Dietary sources of conjugated dieonic isomers of linoleic acid, a newly recognized class of anticarconogens. J Food Compos Anal 5:185–197

    CAS  Google Scholar 

  17. Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195

    CAS  Google Scholar 

  18. Claustre J, Toumi F, Trompette A, Jourdan G, Guignard H, Chayvialle JA, Plaisance P (2002) Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am J Physiol Gastrointest Liver Physiol 283:521–528

    Google Scholar 

  19. Cochrane NJ, Reynolds EC (2009) Casein phosphopeptides in oral health. In: Wilson M (ed) Food constituents and oral health: current status and future prospects. CRC, Boca Raton, pp 185–219

  20. Daniel H, Vohwinkel M, Rehner G (1990) Effect of casein and beta-casomorphins on gastrointestinal motility in rats. J Nutr 120:252–257

    CAS  Google Scholar 

  21. De Moreno de LeBlanc A, Matar C, LeBlanc N, Perdigon G (2005) Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Res 7:R477–R486

    CAS  Google Scholar 

  22. De la Fuente MA, Juárez M (2001) Los quesos: Una fuente de nutrientes. Aliment Nutr Salud 8:75–83

    Google Scholar 

  23. De Noni I, Cattaneo S (2010) Occurrence of beta-casomorphins 5 and 7 in commercial dairy products and in their digests following in-vitro simulated gastro-intestinal digestion. Food Chem 119:560–566

    Google Scholar 

  24. De Simone C, Ferranti P, Picariello G, Scognamiglio I, Dicitore A, Addeo F, Chianese L, Stiuso P (2011) Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol Nutr Food Res 55:229–238

    Google Scholar 

  25. De Simone C, Picariello G, Mamone G, Stiuso P, Dicitore A, Vanacore D, Chianese L, Addeo F, Ferranti P (2009) Characterization and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. J Pept Sci 15:251–258

    Google Scholar 

  26. Dupas C, Adt I, Cottaz A, Boutrou R, Molle D, Jardin J, Jouvet T, Degraeve PA (2009) Chromatographic procedure for semi-quantitative evaluation of caseinphosphopeptides in cheese. Dairy Sci Technol 89:519–529

    CAS  Google Scholar 

  27. Ebringer L, Ferencik M, Krajcovic J (2008) Beneficial health effects of milk and fermented dairy products—review. Folia Microbiol 53:378–394

    CAS  Google Scholar 

  28. European Food Safety Authority (2009) Scientific Report prepared by a DATEX working group on the potential health impact of β-casomorphins and related peptides. EFSA Sci Rep 231:1–107

    Google Scholar 

  29. Erba D, Ciappellano S, Testolin G (2001) Effect of casein phosphopeptides on inhibition of calcium intestinal absorption due to phosphate. Nutr Res 21:649–656

    CAS  Google Scholar 

  30. Erba D, Ciappellano S, Testolin G (2002) Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. J Nutr 18:743–746

    CAS  Google Scholar 

  31. Ferranti P, Barone F, Chianese L, Addeo F, Scaloni A, Pellegrino L, Resmini P (1997) Phosphopeptides from Grana Padano cheese: nature, origin and changes during ripening. J Dairy Res 64:601–615

    CAS  Google Scholar 

  32. Ferraretto A, Gravaghi C, Fiorelli A, Tettamanti G (2003) Casein-derived bioactive phosphopeptides: role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells. FEBS Lett 551:92–98

    CAS  Google Scholar 

  33. Floris R, Recio I, Berkhout B, Visser S (2003) Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr Pharm Des 9:1257–1273

    CAS  Google Scholar 

  34. Froetschel MA (1996) Bioactive peptides in digesta that regulate gastrointestinal function and intake. Am Soc Animal Sci 74:2500–2508

    CAS  Google Scholar 

  35. Gagnaire V, Molle D, Herrouin M, Leonil J (2001) Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49:4402–4413

    CAS  Google Scholar 

  36. German JB (1999) Butyric acid: a role in cancer prevention. Nutr Bull 24:293–299

    Google Scholar 

  37. German JB, Dillard CJ (2006) Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 46:57–92

    CAS  Google Scholar 

  38. Gómez-Ruiz JA, Ramos M, Recio I (2002) Angiotensin converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int Dairy J 12:697–706

    Google Scholar 

  39. Gómez-Ruiz JA, Ramos M, Recio I (2004a) Angiotensin-converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 14:1075–1080

    Google Scholar 

  40. Gómez-Ruiz JA, Ramos M, Recio I (2004b) Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1054:269–277

    Google Scholar 

  41. Gómez-Ruiz JA, Taborda G, Amigo L, Recio I, Ramos M (2006) Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur Food Res Technol 223:595–601

    Google Scholar 

  42. Gravaghi C, Del Favero E, Cantu L, Donetti E, Bedoni M, Fiorilli A, Tettamanti G, Ferrareto A (2007) Casein phosphopeptide promotion of calcium uptake in HT-29 cell-relation between biological activity and supramolecular structure. FEBS J 274:4999–5011

    CAS  Google Scholar 

  43. Grecksch G, Schweigert C, Matthies H (1981) Evidence for analgesic activity of beta-casomorphin in rats. Neurosci Lett 27:325–328

    CAS  Google Scholar 

  44. Gupta A, Mann B, Kumar R, Sangwan RB (2009) Antioxidant activity of Cheddar cheeses at different stages of ripening. Int J Dairy Technol 62:339–347

    CAS  Google Scholar 

  45. Gupta A, Mann B, Kumar R, Sangwan RB (2010) Identification of antioxidant peptides in Cheddar cheese made with adjunct culture Lactobacillus casei ssp casei 300. Milchwissenschaft 65:396–399

    CAS  Google Scholar 

  46. Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997a) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal. J Pediatr Gastroenterol Nutr 24:56–62

    CAS  Google Scholar 

  47. Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997b) Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J Trace Elem Med Biol 11:143–149

    CAS  Google Scholar 

  48. Heaney RP (1996) Calcium. In: Bilezkian JP, Raisz GA, Rodan GA (eds) Principles of bone biology. Academic, New York pp 1007–1018

  49. Hernández-Ledesma B, Contreras MM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interf Sci 165:23–35

    Google Scholar 

  50. Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L (2005) Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin: identification of active peptides by HPLC–MS/MS. J Agric Food Chem 53:588–593

    Google Scholar 

  51. Hill RD, Lahov E, Givol D (1974) A rennin-sensitive bond in alpha and beta casein. J Dairy Res 41:147–153

    CAS  Google Scholar 

  52. IDF (2010) The world dairy situation 2010. Bulletin of the IDF 446:197

  53. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Bälter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89:1425–1432

    CAS  Google Scholar 

  54. Jarmolowska B, Kostyra E, Krawczuck S, Kostyra H (1999) β-Casomorphin-7 isolated from Brie cheese. J Sci Food Agr 79:1788–1792

    CAS  Google Scholar 

  55. Keys A (1984) Serum cholesterol response to dietary cholesterol. Am J Clin Nutr 40:351–359

    CAS  Google Scholar 

  56. Kitts DD (2005) Antioxidant properties of casein phosphopeptides. Trends Food Sci 16:549–554

    CAS  Google Scholar 

  57. Kitts DD, Nakamura S (2006) Calcium-enriched casein phosphopeptide stimulates release of IL-6 cytokine in human epithelial intestinal cell line. J Dairy Res 73:44–48

    CAS  Google Scholar 

  58. Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37:343–350

    CAS  Google Scholar 

  59. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    CAS  Google Scholar 

  60. Kostyra E, Sienkiewicz-Sztapka E, Jarmolowska B, Krawczuck S, Kostyra H (2004) Opioid peptides derived from milk proteins. Polish J Food Nutr Sci 13:25–35

    CAS  Google Scholar 

  61. Lee YS, Noguchi T, Naito H (1980) Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43:457–467

    CAS  Google Scholar 

  62. Legrand P, Rioux V (2010) The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 45:941–946

    CAS  Google Scholar 

  63. Lignitto L, Cavatorta V, Balzan S, Gabai G, Galaverna G, Novelli E, Sforza S, Segato S (2010) Angiotensin-converting enzyme-inhibitory activity of water-soluble extracts of Asiago d’ allevo cheese. Int Dairy J 20:11–17

    CAS  Google Scholar 

  64. Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60:763–771

    CAS  Google Scholar 

  65. López-Expósito I, Recio I (2006) Antibacterial activity of peptides and folding variants from milk proteins. Int Dairy J 16:1294–1305

    Google Scholar 

  66. López-Expósito I, Recio I (2008) Protective effects of milk peptides: antibacterial and antitumor properties. Adv Exp Med Biol 606:271–293

    Google Scholar 

  67. Losito I, Carbonara T, De Bari MD, Gobetti M, Palmiseno F, Rizzello CG, Zambonin PG (2006) Identification of peptides in antimicrobial fractions of cheese extracts by electrospray ionization ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. Rapid Commun Mass Spectrom 20:447–455

    CAS  Google Scholar 

  68. Lund M, Ardö Y (2004) Purification and identification of water soluble phosphopeptides from cheese using Fe(III) affinity chromatography and mass spectrometry. J Agric Food Chem 52:6616–6622

    CAS  Google Scholar 

  69. Mader JS, Salsman JS, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624

    CAS  Google Scholar 

  70. Malkoski M, Dashper SG, O’Brien-Simpson NM, Talbo GH, Macris M, Cross KJ (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 45:2309–2315

    CAS  Google Scholar 

  71. Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B (2012) Antihypertensive peptides from food proteins: a review. Food Funct 3:350–361

    Google Scholar 

  72. Mc Namara DJ (2000) Review: dietary cholesterol and atherosclerosis. Biochim Biophys Acta 1529:310–320

    CAS  Google Scholar 

  73. Meisel H (1998) Overview on milk protein-derived peptides. Int Dairy J 8:363–373

    CAS  Google Scholar 

  74. Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295

    CAS  Google Scholar 

  75. Meisel H, Frister H (1988) Chemical characterization of a caseino-phosphopeptide isolated from in vitro digests of a casein diet. Biol Chem Hoppe Seyler 369:1275–1279

    CAS  Google Scholar 

  76. Meyer J, Bütikofer U, Walther B, Wechsler D, Sieber R (2009) Changes in angiotensin-converting enzyme-inhibition and concentrations of the tripeptides Val-Pro-Pro and Ile-Pro-Pro during ripening of different cheese varieties. J Dairy Sci 92:826–836

    CAS  Google Scholar 

  77. Miguel M, Gómez-Ruiz JA, Recio I, Aleixandre A (2010) Changes in arterial blood pressure after single oral administration of milk casein-derived peptides in spontaneously hypertensive rats. Mol Nutr Food Res 54:1–6

    Google Scholar 

  78. Mills S, Ross RP, Hill C, FitzGerald GF, Stanton C (2011) Milk intelligence: mining milk for bioactive substances associated with human health. Int Dairy J 21:377–401

    CAS  Google Scholar 

  79. Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2:18–27

    CAS  Google Scholar 

  80. Naito H, Suzuki H (1974) Further evidence for the formation of phosphopeptide in the intestinal lumen from dietary β-casein. Agric Biol Chem 38:1534–1545

    Google Scholar 

  81. O’Brien NM, O’Connor TP (2004) Nutritional aspects of cheese. In: Fox PF, Guinee TP, Cogan TM, McSweeney PLH (eds) Cheese: chemistry, physics and microbiology. General aspects, vol 1, 3rd edn. Elsevier Academic, London pp 576–581

  82. Ong L, Henriksson A, Shah NP (2007) Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Lait 87:149–165

    CAS  Google Scholar 

  83. Ong L, Shah NP (2008) Influence of probiotic Lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE-inhibitory activity of Cheddar cheeses ripened at 4, 8, and 12 °C. J Food Sci 73:111–120

    Google Scholar 

  84. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298

    CAS  Google Scholar 

  85. Parodi PW (2004) Milk fat in human nutrition. Aust J Dairy Technol 59:3–59

    CAS  Google Scholar 

  86. Parodi PW (2007) A role for milk proteins and their peptides in cancer prevention. Curr Pharm Des 13:813–828

    CAS  Google Scholar 

  87. Parrot S, Degraeve P, Curia C, Martial-Gros A (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung 47:87–94

    CAS  Google Scholar 

  88. Paul M, van Hekken DL (2010) Assessing antihypertensive activity in native and model queso fresco cheeses. J Dairy Sci 94:2280–2284

    Google Scholar 

  89. Pérès JM, Bouhallab S, Bureau F, Neuville D, Maubois JL, Devroede G, Arhan R, Bouglé D (1999) Mechanism of absorption of casein phosphopeptide bound iron. J Nutr Biochem 10:215–222

    Google Scholar 

  90. Phelan M, Aherne A, FitzGerald RJ, O’Brien NM NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654

    CAS  Google Scholar 

  91. Phelan M, Kerins D (2011) The potential role of milk-derived peptides in cardiovascular disease. Food Funct 2:153–167

    CAS  Google Scholar 

  92. Pritchard SR, Phillips M, Kailasapathy K (2010) Identification of bioactive peptides in commercial Cheddar cheese. Food Res Int 43:1545–1548

    CAS  Google Scholar 

  93. Renner E (1987) Nutritional aspects of cheese In: Fox PF (ed) Cheese: chemistry, physics and microbiology. General aspects, vol 1. Elsevier Applied Science, London pp 345–363

  94. Rioux V, Catheline D, Bouriel M, Legrand P (2005) Dietary myristic acid at physiologically relevant levels increase the tissue content of C20:5 n−3 and C20:3 n−6 in the rat. Reprod Nutr Dev 45:599–612

    CAS  Google Scholar 

  95. Rioux V, Daval S, Guillou H, Jan S, Legrand P (2003) Although is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reprod Nutr Dev 43:419–430

    CAS  Google Scholar 

  96. Rioux V, Legrand P (2007) Saturated fatty acids: simple molecular structures with complex cellular functions. Curr Opin Clin Nutr Metab Care 10:752–758

    CAS  Google Scholar 

  97. Rizzello CG, Losito I, Gobetti M, Carbonara T, De Bari MD, Zambonin PG (2005) Antibacterial activity of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88:2348–2360

    CAS  Google Scholar 

  98. Roudot-Algaron F, Le Bars D, Kerhoas L, Einhorn J, Gripon JC (1994) Phosphopeptides from Comté cheese: nature and origin. J Food Sci 59(544-547):560

    Google Scholar 

  99. Roy MK, Kuwabara Y, Hara Y, Watanabe Y, Tamai Y (2002) Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. J Dairy Sci 85:2065–2074

    CAS  Google Scholar 

  100. Ryder JW, Portocarrero CP, Song XM (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157

    CAS  Google Scholar 

  101. Ryhänen EL, Pihlanto-Leppälä A, Pahkala E (2001) A new type of ripened, low-fat cheese with bioactive properties. Int Dairy J 11:441–447

    Google Scholar 

  102. Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh T (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J Dairy Sci 83:1434–1440

    CAS  Google Scholar 

  103. Scholtz-Ahrens KE, Schrezenmeir J (2000) Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides. Br J Nutr 84(suppl19):S147–S153

    Google Scholar 

  104. Schuster GS, Dirksen TR, Ciarlone AE, Burnett GW, Reynolds MT, Lankford MT (1980) Anticaries and antiplaque potential of free fatty acids in vitro and in vivo. Pharm Ther Dent 5:25–33

    CAS  Google Scholar 

  105. Sforza S, Ferroni L, Galaverna G, Dossena A, Marchelli R (2003) Extraction, semi-quantification, and fast on-line identification of oligopeptides in Grana Padano cheese by HPLC–MS. J Agric Food Chem 51:2130–2135

    CAS  Google Scholar 

  106. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthane on the auto-oxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    CAS  Google Scholar 

  107. Sieber R, Bütikofer U, Egger Ch, Portmann R, Walther B, Wechsler D (2010) ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci Technol 90:47–73

    CAS  Google Scholar 

  108. Sienkiewicz-Szlapka E, Jarmolowska B, Krawczuk S, Kostyra E, Iwan M (2009) Contents of agonistic and antagonistic peptides in different cheese varieties. Int Dairy J 19:258–263

    CAS  Google Scholar 

  109. Singh TK, Fox PF, Healy A (1995) Water-soluble peptides in Cheddar cheese: isolation and identification of peptides in the diafiltration retentate of the water-soluble fraction. J Dairy Res 62:629–640

    CAS  Google Scholar 

  110. Singh TK, Fox PF, Healvy (1997) Isolation and identification of further peptides in the diafiltration retentate of the water-soluble fraction of Cheddar cheese. J Dairy Res 64:433–443

    CAS  Google Scholar 

  111. Singh M, Rosen CL, Chang K, Haddad GG (1999) Plasma β-casomorphin-7 immunoreactive peptide increases after milk ingestion in newborn but not in adult dogs. Pediatr Res 26:34–38

    Google Scholar 

  112. Smacchi E, Gobbetti M (1998) Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin-I-converting enzyme. Enzym Microb Technol 22:687–694

    CAS  Google Scholar 

  113. Stepaniak L, Fox PF, Sorhaug T, Grabska J (1995) Effect of peptides from the sequence 58–72 of beta-casein on the activity of endopeptidase, aminopeptidase, and X-prolyl-dipeptidyl aminopeptidase from Lactococcus lactis spp lactis MG1363. J Agric Food Chem 43:849–853

    CAS  Google Scholar 

  114. Stepaniak L, Jedrychowski L, Wroblewska B, Sørhaug T (2001) Immunoreactivity and inhibition of angiotensin-I converting enzyme and lactococcal oligopeptidase by peptides from cheese Ital. J Food Sci 13:373–381

    Google Scholar 

  115. Taira T, Hilaviki LA, Aalto J, Hilaviki I (1990) Effect of beta-casomorphin on neonatal sleep in rats. Peptides 11:1–4

    CAS  Google Scholar 

  116. Teucher B, Majsak-Newman G, Dainty JR, McDonagh D, FitzGerald RJ, Fairweather-Tait S (2006) Calcium absorption is not increased by caseinophosphopeptides. Am J Clin Nutr 84:162–166

    CAS  Google Scholar 

  117. Tholstrup T (2006) Dairy products and cardiovascular disease. Curr Opin Lipidol 17:1–10

    CAS  Google Scholar 

  118. Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150:1–11

    CAS  Google Scholar 

  119. Thormar H, Isaacs EE, Kim KS, Brown HR (1994) Inactivation of visna virus and other enveloped viruses by free fatty acids and monoglycerides. Ann N Y Acad Sci 724:465–471

    CAS  Google Scholar 

  120. Tidona F, Criscione A, Guastella AM, Zuccaro A, Bordonaro S, Marletta D (2009) Bioactive peptides in dairy products. Ital J Anim Sci 8:315–340

    Google Scholar 

  121. Tirelli A, De Noni I, Resmini P (1997) Bioactive peptides in milk products. Ital J Food Sci 2:91–98

    Google Scholar 

  122. Toelstede S, Hofmann T (2008) Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J Agric Food Chem 56:2795–2804

    CAS  Google Scholar 

  123. Torres-Llanez MJ, González-Córdova AF, Hernández-Mendoza A, Garcia HS, Vallejo-Cordoba B (2011) Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J Dairy Sci 94:3794–3800

    CAS  Google Scholar 

  124. Tulipano G, Bulgari O, Chessa S, Nardone A, Cocchi D, Caroli A (2010) Direct effects of casein phosphopeptides on growth and differentiation of in vitro cultured osteoblastic cells (MC3T3-E1). Regul Pept 160:168–174

    CAS  Google Scholar 

  125. Umbach M, Teschemacher H, Praetorius K, Hirschhauser R, Bostedt H (1985) Demonstration of a beta-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regul Pept 12:223–230

    CAS  Google Scholar 

  126. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43:553–587

    CAS  Google Scholar 

  127. Walther B, Schmid A, Sieber R, Wehrmüller K (2008) Cheese in nutrition and health. Dairy Sci Technol 88:389–405

    CAS  Google Scholar 

  128. Wang H, Cui L, Chen W, Zhang H (2011) An application in Gouda cheese manufacture for a strain of Lactobacillus helveticus ND01. Int J Dairy Technol 64:386–393

    CAS  Google Scholar 

  129. Yang M, Cook ME (2003) Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med 228:51–58

    CAS  Google Scholar 

  130. Yang N, Strøm MB, Mekonnen SM, Svendsen JS, Rekdal Ø (2004) The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. J Pept Sci 10:37–46

    CAS  Google Scholar 

  131. Yasuda S, Ohkura N, Suzuki K, Yamasaki M, Nishiyama K, Kobayashi H, Hoshi Y, Kadooka Y, Igoshi K (2010) Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage. J Dairy Sci 93:1393–1400

    CAS  Google Scholar 

  132. Zemel ML, Miller SL (2004) Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr Rev 62:125–131

    Google Scholar 

Download references

Acknowledgments

This work has received financial support from the projects AGL2008-01713, AGL2011-24643, Consolider Ingenio 2010 FUN-C-Food CSD2007-063 from Ministerio de Ciencia e Innovación, and project P2009/AGR-1469 from Comunidad de Madrid.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isidra Recio.

About this article

Cite this article

López-Expósito, I., Amigo, L. & Recio, I. A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. Dairy Sci. & Technol. 92, 419–438 (2012). https://doi.org/10.1007/s13594-012-0066-5

Download citation

Keywords

  • Cheese
  • Composition
  • Health
  • Nutrition
  • Bioactive peptides

关键词

  • 干酪
  • 组成
  • 健康
  • 营养
  • 生物活性肽