Skip to main content

A comprehensive review on the composition and properties of buffalo milk

Abstract

The aim of this review is to update the knowledge regarding the composition and properties of buffalo milk (BM). Buffalo milk has higher levels of fat, lactose, protein, ash and Ca, and vitamins A and C and lower levels of vitamin E riboflavin and cholesterol; an absence of carotene; and the presence of the blue-green pigment (biliverdin) as well as a bioactive pentasaccharide and gangliosides not present in cow milk (CM). The fat globules of BM are larger but are less stable and contained less membrane materials than that of CM. Buffalo milk fat has slightly higher levels of saturated fatty acids and has quantitative differences in the distribution of triglycerides and physical properties in comparison to CM. The casein micelles of BM are larger and richer in minerals and can be disrupted by alkali at higher pH values than that of CM. The primary structures of all BM proteins have been established. High homologies have been found between the proteins of BM and CM, but BM αs1-casein and αs2-casein have lower levels of phosphorylation. The activities of several enzymes in BM are presented and discussed. The viscosity and curd tension of BM are higher; rennet coagulation is faster, and heat stability is lower than that of CM. The available published data gives a better understanding of BM, but more studies are required on some aspects to give a clearer picture on the detailed composition and properties of BM.

水牛乳组成和特性的综合评述

摘要 该综述旨在提供水牛乳(BM)的组成和特性的最新知识。与牛乳(CM)相比, 水牛乳含有较高含量的脂肪、乳糖、蛋白质、灰分、钙、维生素A和C以及较低含量的维生素E、核黄素和胆固醇。水牛乳不含有胡萝卜素, 但是含有一些牛乳中没有的生物活性物质, 如胆绿素、五糖和神经节苷脂。水牛乳脂肪球比牛乳要大, 但是不稳定且脂肪球膜物质含量较低。水牛乳脂肪的饱和脂肪酸比牛乳要稍高, 其三酰甘油的分布以及脂肪的物理特性与牛乳也有一定的差异。水牛乳的酪蛋白胶束比牛乳要大且富含矿物质, 但水牛乳酪蛋白胶束在较高pH条件下比牛乳酪蛋白胶束易解聚。水牛乳蛋白质的一级结构已经被确定, 结果发现水牛乳蛋白和牛乳蛋白有很高的同源性, 但是水牛乳的αs1-酪蛋白和αs2-酪蛋白磷酸化作用较低。该综述也讨论了水牛乳中一些酶的活性, 水牛乳的粘度和凝乳张力比牛乳要高, 凝乳的速度更快、热稳定性要低。本文提供的数据可以对水牛乳有较全面的了解, 但是要对水牛乳的组成和特性有更清晰和更具体的描述, 还有大量的研究需要去做。

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abd El-Gawad IA, El-Abd MM, Ragab FH, El-Aasar MA (1988) Study on vitamin B2 in milk and some milk products. Egypt J Food Sci 16:175–192

    Google Scholar 

  2. Abd El-Gawad IA, El-Sayed EM, Mahfouz MB, Abd El-Salam AM (1996) Changes of lactoferrin concentration in colostrum and milk from different species. Egypt J Dairy Sci 24:197–308

    Google Scholar 

  3. Abd El-Hamid LB, Khader AE (1982) Size distribution of fat globules in buffalo, cow, goat and sheep milk. Egypt J Dairy Sci 10:43–46

    Google Scholar 

  4. Abd El-Hamid LB, Mahran GA, Shehata AE, Osman ShG (1977) Lipase activity in buffaloes milk 2. Effect of feeding system, animal age and milking phase and meal. Egypt J Dairy Sci 5:7–10

    CAS  Google Scholar 

  5. Abd El-Hamid LB, Amer SN, Zedan AN (1981) Rennet coagulation time of goat’s, sheep’s, buffaloes’ and cow’s milk. 2- Effect of some additives. Egypt J Dairy Sci 9:137–142

    CAS  Google Scholar 

  6. Abd El-Salam MH (1968) The chemical composition of buffalo milk. III Copper, iron and zinc contents of buffalo milk. Indian J Dairy Sci 22:168–172

    Google Scholar 

  7. Abd El-Salam MH (1975) Preparation and properties from αs-casein buffalo’s milk. J Dairy Res 42:157–162

    CAS  Google Scholar 

  8. Abd El-Salam MH (1990) Problems and opportunities in processing buffalo milk. Proc 23rd Inter Dairy Cong 1:397–411

    Google Scholar 

  9. Abd El-Salam MH, El-Shibiny S (1966) The chemical composition of buffalo milk I General composition. Indian J Dairy Sci 19:151–154

    CAS  Google Scholar 

  10. Abd El-Salam MH, El-Shibiny S (1975) Preparation and properties of β-casein from buffalo’s milk. J Dairy Res 42:163–167

    CAS  Google Scholar 

  11. Abd El-Salam MH, Manson W (1966) The C-terminal sequence of amino acid residues of κ-casein isolated from buffalo’s milk. J Dairy Res 34:85–88

    Google Scholar 

  12. Abd El-Salam MH, Abd El-Hamid LB, Hofi AA (1974) Curd tension of buffalo milk. Egypt J Dairy Sci 2:135–138

    Google Scholar 

  13. Abd El-Salam MH, Osman YM, Nagmoush MR (1978a) Comparative study of the composition of casein micelles from buffalo’s and cow’s milk. Egypt J Dairy Sci 6:1–8

    CAS  Google Scholar 

  14. Abd El-Salam MH, Osman YM, Nagmoush MR (1978b) A study of some properties of casein micelles from buffalo’s and cow’s milk. Egypt J Dairy Sci 6:9–15

    CAS  Google Scholar 

  15. Abd El-Salam MH, El-Dein HF, El-Etriby HM, Al-Khamy AF, Shahin NM (1996) The use of thrombolastograph to follow acid induced gelation of buffalo milk by glucono-delta-lactone. Egypt J Dairy Sci 24:165–176

    CAS  Google Scholar 

  16. Abd El-Ghani S, Sayed AF (1997) Natural thiocyanate content and optimum conditions for activation of lactoperoxidase system in raw buffalo milk. Egypt J Dairy Sci 25:241–252

    Google Scholar 

  17. Abdel Dayem AMH, Mahmoud KGhM, Nawaito MF, Ayoub MM, Darwish SF (2009) Genotyping of kappa-casein gene in Egyptian buffalo bulls. Livest Sci 132:286–289

    Google Scholar 

  18. Abo-Elnaga IG, El-Sadek GM, El-Sokkary AM (1966) Clustering of fat globules in cows’ and buffaloes’ milk, creaming mechanism and the physical arrangement of globules in gravity cream. Milchwissenschaft 21:210–213

    Google Scholar 

  19. Addeo F, Mercier JC, Ribadeau-Dumas B (1977) The caseins of buffalo’s milk. J Dairy Res 44:455

    CAS  Google Scholar 

  20. Addeo F, Alloisio V, Chianese L, Alloisio V (2007) Tradition and innovation in the water buffalo dairy products. Ital J Anim Sci 6(Supplement 2):51–57

    Google Scholar 

  21. Ahmad S, Gaucher I, Rousseau F, Beaucher E, Piot M, Grongnet JF, Gaucheron F (2008) Effect of acidification on physicochemical characteristics of buffalo milk: a comparison with cow milk. Food Chem 106:11–17

    CAS  Google Scholar 

  22. Ahmad S, Piot M, Rousseau F, Grongnet JF, Gaucheron F (2009) Physico-chemical changes in casein micelles of buffalo and cow milks as a function of alkalinisation. Dairy Sci & Technol 89:387–403

    CAS  Google Scholar 

  23. Ahmed NS, Abou Dawood AE, Ghita EI, Abd El-Gawad IA, Abas FA (1984) Carbonyl compounds of fresh buffaloes and cows butter oil. Egypt J Dairy Sci 12:173–177

    CAS  Google Scholar 

  24. Akhundov DM, Farzalieva RR (1979) Composition and properties of milk of heifer buffaloes. Agamaliogly Zootekhnil 1:6–8

    Google Scholar 

  25. Al-Jobori SM, Itawi RK, Saad A, Shihab KM, Jalil M, Farhan SS (1990) Analysis of natural milk and milk powder samples by NAA. J Radioanal Nucl Chem 144:229–239

    CAS  Google Scholar 

  26. Amer SN, El-Abd MM, Ibrahim MKE (1974) Factors affecting the rennet coagulation time of milk. Egypt J Dairy Sci 2:25–32

    Google Scholar 

  27. Arian HH, Khaskhali M, Arian MA, Soomro AH, Nizamani AH (2008) Heat stability and quality characteristics of postpartum buffalo milk. Pak J Nutr 7:303–307

    Google Scholar 

  28. Ariota B, Campanile G, Potena A, Napolano R, Gasparrini B, Neglia GL, Di Palo R (2007) Ca and P in buffalo milk: curd yield and milk clotting parameters. Ital J Anim Sci 6(suppl 1):497–499

    Google Scholar 

  29. Arumughan C, Narayanan KM (1982) Triacylglycerol composition of buffalo milk fat. J Dairy Res 49:81–85

    CAS  Google Scholar 

  30. Asker AA, Hamzawi LF, Hagrass AE, Abd El-Hamid LB (1978) Studies on buffalo’s milk fat globule membrane II seasonal variations. Egypt J Dairy Sci 6:63–67

    CAS  Google Scholar 

  31. Asker AA, Shehata AE, Gaafar AM, Hofi AA (1981) Effect of direct acidification on buffaloes milk properties. II Curd tension. Ann Agric Sci Ain-Shams Univ Egypt 26:67–75

    Google Scholar 

  32. Bajaj RK, Narasimha K, Mann B, Sangwan RB, Vij S (2005) Isolation of cationic peptides from buffalo α-s1 and α-s2 casein and their antibacterial activity. Indian J Dairy Sci 58:387–391

    CAS  Google Scholar 

  33. Balasubramanta NN, Sarwar N, Narayanan KM (1993) Effect of stage of lactation on oligosaccharides level in milk. Indian J Dairy Biosci 4:58–60

    Google Scholar 

  34. Bergamo P, Fedele E, Iannibelli L, Marzillo G (2003) Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products. Food Chem 82:625–631

    CAS  Google Scholar 

  35. Beri R, Sharma KC, Singh S (1984) Lipid composition of fat globule membrane from buffalo and cow’s milk. N Z J Dairy Sci Techol 19:31–35

    CAS  Google Scholar 

  36. Bhat GS, Ramamurthy MK, Rao MB (1981) Carbonyl compounds in cow and buffalo milk fat. J Dairy Sci 64:588–593

    CAS  Google Scholar 

  37. Bhattacharya TK, Misra SS, Sheikh FD, Dayal S, Vohra V, Kumar P, Sharma A (2004) Variability of milk fat globule membrane protein gene between cattle and riverine buffalo. DNA Seq 15:326–331

    CAS  Google Scholar 

  38. Bhonsie D, Chourasia SK, Singh M, Jain RK (2003) Factors influencing major milk constituents in Murrah buffaloes. Indian J Anim Sci 73:107–109

    Google Scholar 

  39. Blasi F, Montesano D, De Anglelis M, Maurizi A, Ventura F, Cossignani L, Simontti MS, Damiani P (2008) Results of streospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J Food Compos Anal 21:1–7

    CAS  Google Scholar 

  40. Bramanti E, Sortino Ch, Onor M, Beni F, Raspi G (2003) Separation and determination of denatured αs1-, αs2-, β and κ-caseins by hydrophobic interaction chromatography in cow’s, ewes and goats’ milk mixture and cheeses. J Chromatogr A 994:59–74

    CAS  Google Scholar 

  41. Braun PG, Preuss SE (2008) Nutritional composition and chemico-physical parameters of water buffalo milk and milk products in Germany. Milchwissenschaft 63:70–72

    CAS  Google Scholar 

  42. Braunitzer G, Liberatori J, Kolde HJ (1979) The primary structure of the beta-lactoglobulin of the water buffalo (Bubalus arnee). Z Naturforsch C 34:880–881

    CAS  Google Scholar 

  43. Calderone V, Giuffrida MG, Viterbo D, Napolitano L, Fortunato D, Conti A, Acharya KR (1996) Amino acid sequence and crystal structure of buffalo α-lactalbumin. FEBS Lett 394:91–95

    CAS  Google Scholar 

  44. Campanella L, Martini E, Pintore M, Tomassetti M (2009) Determination of lactoferrin and immunoglobulin G in animal milks by new immunosensors. Sensors 9:2202–2221

    CAS  Google Scholar 

  45. Chandravadana MVC, Dastur NN (1976) Studies on the biochemical changes in milk II bile pigments in buffalo milk. Milchwissenschaft 31:26–28

    CAS  Google Scholar 

  46. Chianese L, Garro G, Ferranti P, Caira S, Addeo F (1996) Occurrence of casein polymorphism in water buffalo milk. Inter Symp Buffalo Products: Eur Ass Anim Prod Pub 82:187–191

    CAS  Google Scholar 

  47. Chianese L, Cairo S, Lilla S, Pizzolongo F, Ferranti P, Pugiliano G, Addeo F (2004) Primary structure of water buffalo α-lactalbumin variants A and B. J Dairy Res 71:34–39

    Google Scholar 

  48. Chianese L, Quarto M, Pizzolongo F, Calabrese MG, Caira S, Mauriello R, De Pascale S, Addeo F (2009) Occurrence of genetic polymorphism at the αs1-casein locus in Mediterranean water buffalo milk. Int Dairy J 19:181–189

    CAS  Google Scholar 

  49. Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195

    CAS  Google Scholar 

  50. Colarow L, Turini M, Teneberg S, Berger A (2003) Characterization and biological activity of gangliosides in buffalo milk. Biochim Biophys Acta 1631:94–106

    CAS  Google Scholar 

  51. D’Ambrosio C, Arena S, Salzano AM, Renzone G, Ledda L, Scaloni A (2008) A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics 8:3657–3666. doi:10.1002/pmic.200701148

    Google Scholar 

  52. Dayal S, Bhattacharya TK, Vohra V, Kumar P, Sharma A (2005) Genetic polymorphism of alpha-lactalbumin gene in riverine buffalo. DNA Seq 16:173–179

    CAS  Google Scholar 

  53. De Simone C, Picariello G, Mamone G, Stuso P, Dicitore A, Vanacore D, Chianese L, Addeo F, Ferranti P (2009) Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. J Pept Sci 15:251–258

    Google Scholar 

  54. Del Lama SN, Zago MA (1996) Identification of the κ-casein and β-lactoglobulin genotypes in Brazilian Bos indicus and Bubalus bubalis populations. Brazil J Gen 19:73–77

    Google Scholar 

  55. Di Francia A, Masucci F, De Rosa G, Grasso F, Proto V (2007) Feeding management and milk production in organic and conventional buffalo farms. Ital J Anim Sci 6(Suppl 2):571–574

    Google Scholar 

  56. Di Luccia A, Picariello G, Trani A, Alviti G, Loizzo P, Faccia M, Addeo F (2009) Occurrence of β-casein fragments in cold-stored and curdled buffalo (Bubalus bubalis L) milk. J Dairy Sci 92:1319–1329

    Google Scholar 

  57. Dubey PC, Suman CL, Sanyal MK, Pandey HS, Saxena MM, Yadav PL (1997) Factors affecting the composition of milk of buffaloes. Indian J Anim Sci 67:802–804

    Google Scholar 

  58. El-Abd MM, Abd El-Gawad IA, Ragab FH, El-Aasar MA (1986) Study on vitamin B1 in milk and some milk products. Ann Agric Sci Moshtohor 24:1477–1487

    Google Scholar 

  59. El-Dein HMF (1994) Rennet coagulation of buffalo milk as affected by some factors. Nahrung 38:141–148

    Google Scholar 

  60. El-Gazzar H, Rafaie MOI, El-Aziz MA (1999) Activity of xanthine oxidase in milk and its products and effect of heat and folic acid upon its activity. Ann Agric Sci Ain Shams Univ Cairo 44:631–639

    Google Scholar 

  61. El-Ghandour MA, Helal FR, Hofi AA (1976) Comparative study for microscopic structure of buffalo and cows butter fat. Egypt J Dairy Sci 4:161–167

    Google Scholar 

  62. El-Loly MM, Awad AA, Mansour AIA (2007) Thermal kinetics denaturation of buffalo immunoglobulins. Int J Dairy Sci 2:292–301

    CAS  Google Scholar 

  63. El-Nimr AA, El-Ghandour MA (1980) Dilatation properties of local cow’s and buffalo’s milk fat and their fractions I Regime 16-6-13. Res Bull Ain Shams Univ 1325:11

    Google Scholar 

  64. El-Nimr AA, El-Sokkary S, Ahmed NS, El-Senaity MH (1979) Some rheological properties of buffalo butteroil during winter and summer. Egypt J Dairy Sci 7:155–161

    Google Scholar 

  65. El-Sadek G, Rifaat ID, Abd El-Salam MH, El-Bagoury E (1972) Distribution of fatty acids in buffalo milk fat. Indian J Dairy Sci 25:167–170

    CAS  Google Scholar 

  66. El-Shabrawy SA, Hagrass EEA (1980) Some trace elements of buffalo milk as determined by atomic absorption. Egypt J Dairy Sci 35:239–243

    Google Scholar 

  67. El-Shibiny S, Abd El-Salam MH (1973) Studies on the electrical conductivity of buffalo and cow milk. Milchwissenschaft 28:571–572

    Google Scholar 

  68. El-Shibiny S, Abd El-Salam MH (1976) Action of milk clotting enzymes on β-caseins from buffaloes and cows milk. J Dairy Res 43:443–448

    CAS  Google Scholar 

  69. El-Shibiny S, Abd El-Salam MH (1980) The role of colloidal calcium in rennet coagulation of milk. Egypt J Dairy Sci 8:35–40

    CAS  Google Scholar 

  70. El-Shibiny S, Fontecha J, Juarez M, Abd Rabou NS (2005) Triglycerides of buffalo’s and cow’s samna. Egypt J Dairy Sci 33:115–133

    CAS  Google Scholar 

  71. El-Zeini HM (2001) The use of scanning electron microscopy and image analysis techniques in determining the effect of heating on the rheologial properties of casein micelles of buffalo’s milk. Proc 8th Egyptian Conf Dairy Sci & Technol, Cairo, 3–5 November 2001

  72. El-Zeini HM (2006) Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Pol J Food Nutr Sci 15:147–154

    Google Scholar 

  73. Enb A, Abou Donia MA, Abd-Rabou NS, Abou-Arab AAK, El-Senaity MH (2009) Chemical composition of raw milk and heavy metal behaviour during processing of milk products. Global Vet 3:268–275

    CAS  Google Scholar 

  74. Fantuz F, Baldi A, Dellorto V, Polidori F, Rossi CS, Pollitis I, Heegaard CW (1998) Distribution of plasminogen activator forms in different fractions of buffalo milk. J Dairy Res 65:521–527

    CAS  Google Scholar 

  75. Fatouh AS, Singh RK, Koehler PE, Mahran GA, Metwally AE (2005) Physical, chemical and stability properties of buffalo butter oil fractions obtained by multi-step dry fractionation. Food Chem 89:243–252

    CAS  Google Scholar 

  76. Felgini M, Bonizzi I, Bupponi JN, Cosenza G, Ramunno L (2009) Identification and quantification of αs1, αs2, β, and κ-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectroscopy. J Agric Food Chem 57:2988–2992

    Google Scholar 

  77. Fernandes SAA, Mattos WRS, Matarazzo SV, Tonhati H, Sundfeld Gama MA, Lanna DPD (2007) Activity of ∆9desaturase enzyme in mammary gland of lactating buffaloes. Ital J Anim Sci 6(Suppl 2):1060–1062

    Google Scholar 

  78. Ferranti P, Scaloni A, Caira S, Chianese L, Malorni A, Addeo F (1998) The primary structure of water buffalo αs1- and β-casein: identification of phosphorylation sites and characterization of a novel β-casein variant. J Pro Chem 17:835–844

    CAS  Google Scholar 

  79. Ganguli NC, Bhavadasan MK (1980) Useful use of urea in milk. Indian Dairym 32:879–884

    Google Scholar 

  80. Ghatak PK, Singh A, Bhavadasan MK, Ganguli NC (1980) The effect of the addition of aldehydes or sugar on the heat stability of buffalo milk. NZ J Dairy Sci Techol 15:159–169

    CAS  Google Scholar 

  81. Ghosh SK, Chaudhuri S, Roy J, Sinha NK, Sen A (1971) Physicochemical investigations of buffalo β-lactoglobulin. Studies on sedimentation, diffusion and hydrogen ion titration. Arch Biochem Biophys 144:6–15

    CAS  Google Scholar 

  82. Ghosh CP, Nagpaul PK, Prasad S (2004) Sub-clinical mastitis in cattle and buffaloes and its impact on somatic cell count and milk composition. Indian J Dairy Sci 57:329–333

    Google Scholar 

  83. Gokhale AJ, Upadyhyay KG, Pandya AJ (2001) Fat rich dairy products from buffalo milk. Indian Dairym 53(3):17–25

    Google Scholar 

  84. Gonzalez S, Nieuwenhove CV, Perez-Chaia A, De Ruiz HAP (2004) Conjugated linoleic acid in buffalo (Bubalus bubalis) milk from Argentina. Milchwissenschaft 59:506–508

    Google Scholar 

  85. Haggag HF, Hamzawi LF, Mahran GA, Ali MM (1991) Physico-chemical properties of colostrums, clinical and subclinical mastitic buffalo milk. Egypt J Dairy Sci 19:55–63

    Google Scholar 

  86. Hammad YA (1993) Instability of buffalo milk fat globules. Ann Agric Sci 38:111–125

    Google Scholar 

  87. Hamulv G, Kandasamy C (1982) Increasing the keeping quality of milk by activation of its lactoperoxidase system: results from Sri Lanka. Milchwissenschaft 37:454–457

    Google Scholar 

  88. Han B-Z, Meng Y, Li M, Yang Y-X, Ren F-Z, Zeng Q-K, Nout MJR (2007) A survey on the microbiological and chemical composition of buffalo milk in China. Food Control 18:742–746

    CAS  Google Scholar 

  89. Hayashi Y, Shah S, Shah SK, Kumagai H (2005) Dairy production and nutritional status of lactating buffalo and cattle in small-scale farms in Terai, Nepal. Livest Res Rural Dev 17:10–16

    Google Scholar 

  90. Helal FR, El-Ghandour MA, Hofi AA (1977) Polymorphism in milk fat and its fractions. Egypt J Dairy Sci 5:37–42

    Google Scholar 

  91. Hewedy MM (1990) Orotic acid in milk: variability among farm animals. Egypt J Dairy Sci 18:247–253

    Google Scholar 

  92. Hofi AA, Rifaat ID, Khorshid MA (1966a) Studies on some physical and physico-chemical properties of Egyptian buffalo’s and cow’s milk. I Freezing point. Indian J Dairy Sci 19:113–116

    CAS  Google Scholar 

  93. Hofi AA, Rifaat ID, Khorshid MA (1966b) Studies on some physical and physico-chemical properties of Egyptian buffalo’s and cow’s milk. II Refractive index. Indian J Dairy Sci 19:117–121

    Google Scholar 

  94. Hofi AA, Rifaat ID, Khorshid MA (1966c) Studies on some physical and physico-chemical properties of Egyptian buffalo’s and cow’s milk. IV Oxidation-reduction potential. Indian J Dairy Sci 19:126–129

    CAS  Google Scholar 

  95. Hofi AA, Mahran GA, Asker AA (1973) Seasonal variations in the phospholipid content of buffalo’s milk. Egypt J Dairy Sci 1:97–100

    Google Scholar 

  96. Hofi AA, Mahran GA, Abd El-Hamid LB, Osman ShG (1976) Lipase activity in buffalo’s milk. 1. Effect of lactation period and individuality. Egypt J Dairy Sci 4:111–114

    CAS  Google Scholar 

  97. Hofi AA, Abd El-Salam MH, Mahran GM, Asker AA (1977a) Comparative studies on the globule membrane of buffalo’s and cow’s milk. II. Membrane lipids. Egypt J Dairy Sci 6:81–85

    Google Scholar 

  98. Hofi AA, Hamzawi LF, Mahran GA, Asker AA (1977b) Studies on buffalo milk fat globule membrane. I. Effect of stage of lactation. Egypt J Dairy Sci 5:235–240

    CAS  Google Scholar 

  99. Ibrahim MKE, Amer SN, El-Abd MM (1973a) A study on some factors associated with the rate of coagulation of diluted milk. Egypt J Dairy Sci 1:109–116

    Google Scholar 

  100. Ibrahim MKE, El-Abd MM, Amer SN (1973b) A study of calcium caseinate phosphate particles of buffalo milk. Egypt J Dairy Sci 1:7–12

    Google Scholar 

  101. IDF (2010) The World Dairy Situation 2010. Bulletin of the IDF No. 446/2010. International Dairy Federation, Brussels, Belgium

    Google Scholar 

  102. Imam A, Shazly AE, Abdou S (1974) Buffer value, pKa and buffer intensity curves of buffalo’s cow’s, ewe’s and goats milk. Milchwissenschaft 29:597–598

    CAS  Google Scholar 

  103. Imran M, Khan H, Hassan SS, Khan R (2008) Physicochemical characteristics of various milk samples available in Pakistan. J Zhejiang Univ Sci B 9:546–551

    CAS  Google Scholar 

  104. Ismail AA, El-Deeb SA (1973) Effect of heat processing, storing and homogenization on the viscosity, opacity and stability of cow and buffalo milks. Zeit Leben Untersch Forsch 152:202–207

    Google Scholar 

  105. Ismail AA, Khorshid MA, Ahmed NS (1976) Studies on some enzymes of buffalo milk whey. Egypt J Dairy Sci 4:33–36

    CAS  Google Scholar 

  106. Kansal VK, Priydarshini S (2002) Lysozyme activity in buffalo milk: effect of lactation period, parity, mastitis, season in India, pH and milk processing treatment. Asian-Aust J Anim Sci 15:895–899

    Google Scholar 

  107. Kapoor M, Ludri RS (1984) Secretion rates of some inorganic constituents of milk at different milking intervals in buffalo. Indian J Dairy Sci 37:160–161

    Google Scholar 

  108. Kaur S, Bhatia KL (1989) Yield of free secretory component of buffalo milk. Asian J Dairy Res 8:105–106

    Google Scholar 

  109. Khan MAS, Islam MN, Siddiki MSR (2007) Physical and chemical composition of swamp and water buffalo milk: a comparative study. Ital J Anim Sci 6(Suppl 2):1067–1070

    Google Scholar 

  110. Khattab HM, El-Alamy HA, Abo El-Nor SAH, Salem FAF, Abdou MMA (1998) Effect of protein source on milk yield and composition of lactating buffaloes. Egypt J Dairy Sci 26:1–24

    Google Scholar 

  111. Kholif AM (1997) Effect of number and stage of lactation on the yield, composition and properties of buffalo’s milk. Egypt J Dairy Sci 25:25–39

    CAS  Google Scholar 

  112. Kim BY, Kinsella JE (1989) Rheological changes during slow acid induced gelation of milk by d-glucono-d-lactone. J Food Sci 54:894–900

    CAS  Google Scholar 

  113. Klotz A, Krause I, Einspainer R (2000) Complete sequence determination of water buffalo (Bubalus bubalis) β-casein mRNA transcripts isolated from somatic milk cells. Eur Food Res Technol 211:1–5

    CAS  Google Scholar 

  114. Kumar JS, Kansal VK (2005) Effect of breed and parity of animals, stage of lactation and processing of milk on the content of conjugated linoleic acid in dairy products. Milchwissenschaft 60:370–372

    CAS  Google Scholar 

  115. Kumar A, Singh IN, Yadav PL, Pande HS (1985) Distribution of salt components in buffalo milk during complete lactation. Indian J Dairy Sci 38:309–313

    CAS  Google Scholar 

  116. Kumar MA, Chandra TS, Dastur NN (1987) Influence of different factors on the biliverdin content of buffalo milk. Indian J Dairy Sci 40:427–430

    Google Scholar 

  117. Kumari V, Mathur MP (1981) Buffalo milk lysozyme. Indian J Dairy Sci 34:385–390

    CAS  Google Scholar 

  118. Kuzdzal AF, Savoie S (1980) La composition triglyceridique du lait de bufflone. Comparison avec la composition triglyceridique du lait d’autres espèces animales’. Lait 60:14–26

    Google Scholar 

  119. Lal D, Narayanan KM (1984) Effect of lactation number on the unsaponifiable constituents of milk lipids. Asian J Dairy Res 3:37–40

    CAS  Google Scholar 

  120. Larson BL, Hegarty HM (1979) Orotic acid in milk of various species and commercial dairy products. J Dairy Sci 62:1641–1650

    CAS  Google Scholar 

  121. Larsson M (2009) Water buffalo—identifying question and possibilities from Swedish perspective. α-Laval Publications, Delaval International AB, Tumba, Sweden, p 30

    Google Scholar 

  122. Laxminaryana H, Dastur NN (1968) Buffaloes’ milk and milk products—part 1. Dairy Sci Abstr 30:177–186

    Google Scholar 

  123. Li X, Luo ZL, Chen HB, Cao YS (2008) Isolation and antigenicity evaluation of β-lactoglobulin from buffalo milk. Afr J Biotechnol 7:2258–2264

    CAS  Google Scholar 

  124. Lombardi P, Avallone L, d’Angeko A, Bogin E, Mor T (2000) Buffalo milk enzyme levels, their sensitivity to heat inactivation, and their possible use as markers for pasteurization. J Food Prot 63:970–973

    CAS  Google Scholar 

  125. Macado MP, Wechesler FS, Ramos AA, Macado MP, Wechesler FS, Ramos AA, do Amaral JB, de Souza JC, de Resende FD, De Oliveria JV (2001) Chemical composition and production of milk from Mediterranean buffalo cows raised in western Sặo Paulo State, Brazil (in Portuguese). Rev Bras Zootec 30:1084–1088

    Google Scholar 

  126. Madkor SA, Fox PF (1991) Plasmin activity in buffalo milk. Food Chem 39:139–156

    CAS  Google Scholar 

  127. Maheshwari RK, Bhatia KL (1990) Effect of heating and frozen storage on the level of native, apo and cobalt, copper, manganese and chromium complexed buffalo milk lactoferrin. Milchwissenschaft 45:340–345

    Google Scholar 

  128. Mahfouz MB, El-Sayed EM, Abd El-Gawad IA, El-Etriby H, Abd El-Salam AM (1997) Structural studies on colostrum and milk lactoferrins from different species. Egypt J Dairy Sci 25:41–54

    CAS  Google Scholar 

  129. Mahran GA, Asker AA, Hofi AA (1973) Effect of stage of lactation and individuality of the phospholipid content of buffalo’s milk. Egypt J Dairy Sci 1:101–108

    Google Scholar 

  130. Manjunath GM, Bhat GS (1992) Effect of processing on native proteinases in milk. J Food Sci Technol Mysore 29:195–196

    CAS  Google Scholar 

  131. Mathur ON, Roy NK (1981a) Studies on trace minerals in buffalo milk. Part 2. Boron. Indian J Dairy Sci 34:321–326

    CAS  Google Scholar 

  132. Mathur ON, Roy NK (1981b) Studies on trace minerals in buffalo milk. III. Zinc. Indian J Dairy Sci 34:379–384

    CAS  Google Scholar 

  133. Mathur ON, Roy NK (1982) Studies on trace minerals in buffalo’s milk. IV. Iron. Indian J Dairy Sci 35:550–556

    Google Scholar 

  134. Mattera M, Manzi P, Pizzo ferrato L (2007) Buffalo milk and cheese from animal to human nutrition part 1: the unsaponifiable fraction. Ital J Anim Sci 6(Suppl 2):1123–1126

    Google Scholar 

  135. Mebta SN, Gangwar PC (1984) Milk electrolytes and trace minerals in lactating buffaloes during different seasons. Indian J Dairy Sci 37:54–57

    Google Scholar 

  136. Meena HR, Ram H, Rasool TJ (2007) Milk constituents in non-descript buffaloes reared at high altitudes in the Kumaon hills of the centeral Himalayas. Buffalo Bull 26:72–76

    Google Scholar 

  137. Mehanna NM, Abd El-Salam MH, El-Safty MS, Nofal AA (1982) Fractionation and quantitative determination of buffalo’s casein components by ion-exchange chromatography. Egypt J Dairy Sci 10:143–152

    CAS  Google Scholar 

  138. Mehanna NM, El-Safty MS, Abd El-Salam MH, Nofal AA (1983) The chemical composition and stabilizing capacity of buffalo’s κ-casein and its components. Egypt J Dairy Sci 11:25–32

    CAS  Google Scholar 

  139. Menard O, Ahmed S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C (2010) Buffalo vs.cow milk fat globule: size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat membrane. Food Chem 120:544–551

    CAS  Google Scholar 

  140. Michalski M-C, Camier B, Briard V, Leconte N, Gassi J-Y, Goudédranche FC, Fauquant J (2004) The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Lait 84:343–358

    CAS  Google Scholar 

  141. Mihaylova G, Peeva T (2007) Trans fatty acids and conjugated linoleic acid in the buffalo milk. Ital J Anim Sci 6(Suppl 2):1056–1059

    Google Scholar 

  142. Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M (2003) Angiotension I-converting enzyme inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase hydrolyzed caseins of milk from six species. Appl Environ Microbiol 69:5297–5305

    CAS  Google Scholar 

  143. Misra SS, Sharma A, Bhattacharya TK, Kumar P, Saha RS (2008) Association of breed and polymorphism of α-s1and α-s2casein genes with milk quality and daily milk and constituent yield traits of buffaloes (Bubalus bubalis). Buffalo Bull 27:294–301

    Google Scholar 

  144. Mohamed KS, Al-Talib WA, Al-Kashab LA (1990) Some water soluble vitamins in different types of milk and their stabilities towards light and oxygen. Egypt J Dairy Sci 18:37–44

    Google Scholar 

  145. Mohran MA (1991) Effect of stage of lactation on whey proteins of buffaloes. Egypt J Dairy Sci 19:77–82

    CAS  Google Scholar 

  146. Moio L, Dekimpe J, Etrevant PX, Addeo F (1993) The neutral volatile compounds of water buffalo milk. Ital J Food Sci 5:43–56

    CAS  Google Scholar 

  147. Moioli B, Borghese A (2007) Buffalo breeds and management systems. In: Borghese A (ed) Buffalo Production and Research. FAO, Rome pp, pp 51–73

    Google Scholar 

  148. Mukesh M, Mushira BP, Katria RS, Sobti RC, Ahlwat SS (2006) Sequence analysis of UTR and coding region of kappa-casein gene of Indian riverine buffalo (Bubalus bubalis). DNA Seq 17:94–98

    CAS  Google Scholar 

  149. Nawaz H, Yaqoob M, Sarwar M, Abdulla M, Sultan JI, Khan BB (2009) Effect of feeding different sources of supplemental fat on the performance of Nili-Ravi buffaloes. Indian J Anim Sci 79:188–192

    CAS  Google Scholar 

  150. Nieuwenhove CP, Guterrez CV, Nunez MS, Gonzalez SN (2004) Lactoperoxidase and lyzosyme activity in buffalo milk from Argentina. J Anim Vet Adv 3:431–433

    Google Scholar 

  151. Ooman S, Ganguli NC (1973) Changes in the casein micelles of buffalo milk during the transition from colostrum to normal milk. Indian J Dairy Sci 26:200–206

    Google Scholar 

  152. Pandya AJ, Acharya MR, Goel BK, Upadbyay KG (2004) Heat stability of buffalo milk—a review. Indian J Dairy Sci 57:153–161

    Google Scholar 

  153. Parkash SB, Sharma RS (1985) Orotic acid in milk and milk products. J Food Sci Technol Mysore 23:85–87

    Google Scholar 

  154. Pasquini M, Tommei B, Mattii S (2003) Buffalo milk: proteins electrophoretic profile and somatic cell count. Ital J Anim Sci 2(Suppl 1):299–301

    Google Scholar 

  155. Patel RS, Chakraborthy BK (1985) Reduction of curd forming period shrikhand manufacturing process. Lait 85:55–64

    Google Scholar 

  156. Patel AA, Frede E (1991) Studies on thermal properties of cow and buffalo milk fats. LWT Food Sci Technol 24:323–327

    CAS  Google Scholar 

  157. Patino EM, Stefani YMCG (2005) Milk composition of breed Jafarabadi in Corrientes, Argentina (in Spanish) REDVET, 6 No. 5. http://www.veterinaria.org/revistas/redevet/n050505.html

  158. Patino EM, Medez FI, Faisal EL, Cedres JF, Gomez LG, Stafani MCG (2003) Composition of buffalo milk from Murrah and cross bred Murrah × Mediterranean breeds. http://www.veterinaria.org/revistas/redevet/n050505/050507.html

  159. Patino EM, Pochon DO, Faisal EL, Cedrès JF, Mendez FI, Stefani CG, Crudeli G (2007) Influence of breed, year season and lactation stage on the buffalo milk mineral content. Ital J Anim Sci 6(suppl 2):1046–1049

    Google Scholar 

  160. Peeva T (2001) Composition of buffalo milk. Sources of specific effects on the separate components. Bulgar J Agric Sci 7:329–335

    Google Scholar 

  161. Petrilli P, Pucci P, Pelissier JP, Addeo F (1987) Digestion by pancreatic juice of a beta-casomorphin-containing fragment of buffalo beta-casein. Int J Pro Res 29:504–508

    CAS  Google Scholar 

  162. Prasad R, Pandita NN (1990) Cholesterol content of milk and fractionation during processing. Indian J Dairy Sci 43:190–193

    Google Scholar 

  163. Priyadarshini S, Kansal VK (2002) Purification, characterization, antibacterial activity and N-terminal sequencing of buffalo-milk lysozyme. J Dairy Res 69:419–431

    CAS  Google Scholar 

  164. Priyadarshini S, Kansal VK (2003) Biochemical characterization of buffalo (Bubalus bubalis) milk lysozyme. J Dairy Res 70:467–471

    CAS  Google Scholar 

  165. Puri BR, Narian H, Joshi U, Verma KS (1977) Heat stability of buffalo milk in relation to compositional factors. Indian J Dairy Sci 30:24–26

    CAS  Google Scholar 

  166. Ramamurthy MK, Narayana KM (1971) Fatty acid composition of buffalo and cow milk fat. Milchwissenschaft 26:11–13

    Google Scholar 

  167. Ranjupt YS, Bhavadasan MK, Singh A, Ganguli NC (1982) Heat stability of buffalo milk as affected by the addition of urea and glyceraldehydes. NZ J Dairy Sci Techol 17:185–195

    Google Scholar 

  168. Rifaat ID, El-Sadek GM, Ismail AA (1969a) Enzymes of cow and buffaloes milk I. Oxidation reduction enzymes, peroxidase, xanthine oxidase, catalase and cytochrome C reductase. J Anim Prod UAR 9:155–160

    Google Scholar 

  169. Rifaat ID, El-Sadek GM, Ismail AA (1969b) Enzymes of cow and buffaloes milk II. Esterase enzymes, alkaline phosphatase, acid phosphatase, lipase and ribonuclease. J Anim Prod UAR 9:161–166

    Google Scholar 

  170. Rifaat ID, Farag MS, Helal FR, El-Sadek GM (1973) X-ray differaction and infrared studies on crystal formation in high melting fraction of buffalo butter fat. Egypt J Dairy Sci 1:85–96

    Google Scholar 

  171. Saksena R, Deepak D, Khare A, Sahai R, Tripathi LM, Srivastava VML (1999) A novel pentasaccharide from immune stimulant oligosaccharide fraction of buffalo milk. Biochem Biophys Acta 1428:433–445

    CAS  Google Scholar 

  172. Salama FA, Ismail AA, Youssef AM, Daoud SM (1978) The physico-chemical properties of the colloid in buffalo milk. 1-pH, size of casein micelles and opacity. Egypt J Dairy Sci 6:143–151

    CAS  Google Scholar 

  173. Sangwan RB, Sirnivasulu R, Mann B, Bajaj RK (2007) Antibacterial activity of buffalo lactoferrin hydrolysates against Bacillus subtillus. Indian J Dairy Sci 60:165–167

    Google Scholar 

  174. Sanhotra M, Dutta SM (1986) Effect of cold storage, heating and homogenization on xanthine oxidase activity in buffalo milk. Indian J Dairy Sci 39:423–425

    CAS  Google Scholar 

  175. Schafberg R, Schmidt R, Thiele M, Swalve HH (2007) Fat globule size distribution in milk of a German buffalo herd. Ital J Anim Sci 6(Suppl 2):1080–1083

    Google Scholar 

  176. Secchiari P, Campanile G, Mele M, Zicarelli F,’ Serra A,Viva M del, Amanto L (2004) Fatty acid composition and CLA content of milk fat from Italian buffalo. In: Hocquette JF, Gili S (eds) “Indicators of Milk and Beef Quality”, Wageningen Academic Publishers, Wageningen, Germany

  177. Sekerden Ö, Erdem H, Kankurda B, Özlü B (1999) Factors affecting milk composition and changes in milk composition with lactation stage in Anatolian buffaloes (in Turkish). Turk J Vet Anim Sci 23:505–509

    Google Scholar 

  178. Shah SK, Schermerhorn EC, Cady RA, McDowell RE (1983) Factors affecting milk fat percent of Nili-Ravi buffaloes in Pakistan. J Dairy Sci 66:573–477

    Google Scholar 

  179. Sharaf ES (1988) Studies on the levels of certain members of B-complex vitamins in some Egyptian dairy products. Thesis, Alexandria Univ, Alexandria, Egypt, M.Sc

    Google Scholar 

  180. Sharma GS, Roy NK (1983) Studies on thermal properties of buffalo milk. I Thermal conductivity. Indian J Dairy Sci 36:141–145

    Google Scholar 

  181. Sharma KC, Kaur AP, Singh S (1994) A comparative lipid composition of milk fat globule membrane isolated from milk of Murrah and Nili-Ravi breeds of buffaloes. Arch Anim Breeding 3:527–533

    Google Scholar 

  182. Sharma KC, Varindra C, Singh VS (1996) Day-to-day variations in total cholesterol and some other composents of milk from cow and buffalo during summer. Indian J Dairy Sci 49:472–476

    CAS  Google Scholar 

  183. Sharma KC, Singh J, Singh S (2001) Lipid composition of skim milk membranes isolated from buffalo milk during different seasons. Indian J Dairy Sci 54:9–13

    CAS  Google Scholar 

  184. Sharma R, Rajput YS, Dogra G, Tomar SK (2007) Estimation of vitamin B12 by ELISA and its status in milk. Milchwissenschaft 62:127–131

    CAS  Google Scholar 

  185. Sharma R, Kaur S, Rajput YS, Kumar R (2009) Activity and thermal stability of indigenous enzymes in cow, buffalo and goat milk. Milchwissenschaft 64:173–175

    CAS  Google Scholar 

  186. Shazly AE, Abd El-Salam MH, Mahran GA, Hofi AA (1973a) Gel filtration of buffaloes’ and cows’ β-lactoglobulin on Sephadex G-100. Milchwissenschaft 28:506–507

    CAS  Google Scholar 

  187. Shazly AE, Abd El-Salam MH, Mahran GA, Hofi AA (1973b) Heat denaturation of buffaloes’ and cows’ β-lactoglobulin. Milchwissenschaft 28:777–779

    CAS  Google Scholar 

  188. Sheehan WJ, Phipatanakul W (2009) Tolerance to water buffalo milk in a child with cow allergy. Ann Allergy Asthma Immun 102(4):349

    Google Scholar 

  189. Sikka P, Narayan R, Atheya UK (1990) Effect of light and sterilization on milk riboflavin in cows and buffaloes. Indian J Dairy Sci 43:598–600

    Google Scholar 

  190. Sikka P, Narayan R, Atheya UK (1993) Effect of feed and fodder on milk riboflavin of Sahiwal, crossbred cows and Murrah buffaloes. Indian Vet J 70:79–80

    Google Scholar 

  191. Sindhu JS, Roy NK (1982) Effect of heat treatment on the mineral balance in buffalo’s milk. Indian J Dairy Sci 35:474–480

    Google Scholar 

  192. Singh V, Sharma MK (1984) Factors influencing folate content and folate-binding capacity of milk. Asian J Dairy Res 3:70–74

    CAS  Google Scholar 

  193. Singh P, Gupta PC, Sharda DP (1981) Zinc, copper and iron content in buffalo milk of Hyrana region. Indian J Dairy Sci 34:394–396

    Google Scholar 

  194. Singh CP, Roy NK, Saxena GC (1987) A comparative study on the heat stability of buffalo’s milk, cow’s milk and their two concentrates in relation to their physico-chemical properties—viscosity. Egypt J Dairy Sci 15:179–186

    Google Scholar 

  195. Sodi SS, Mehra ML, Jain AK, Trehan PK (2008) Effect of non-genetic factors on the composition of milk of Murrah buffaloes. Indian Vet J 85:950–952

    Google Scholar 

  196. Soliman MA, Mohamed AA, Hagrass AEA, El-Shabrawy SA (1979) Fatty acid composition of buffalo milk fat. Egypt J Dairy Sci 7:177–182

    Google Scholar 

  197. Srivastava A, Mathur MP, Mudgel VD (1989) Influence of feeding protected fat to buffaloes on some enzymes in milk. Indian J Dairy Sci 42:354–355

    CAS  Google Scholar 

  198. Sukla S, Bhattacharya TK, Venkatachalapathy RT, Kumar P, Sharma A (2006) Cloning and characterization of alpha (s2)-casein of riverine buffalo. DNA Seq 17:458–464

    CAS  Google Scholar 

  199. Sukla S, Bhattacharya TK, Venkatachalapathy RT, Kumar P, Sharma A (2007) Molecular cloning and characterization of buffalo alpha (s1)-casein gene. DNA Seq 18:334–340

    CAS  Google Scholar 

  200. Talpur FN (2007) Fatty acid composition of ruminant milk, meat and dairy products of livestock in Sindh, Pakistan. Ph.D. Thesis, Univ Sindh, Jamshoro, Pakistan

  201. Tambet RV, Sirinivasan MR (1979) Changes in surface tension, viscosity and tension of buffalo and cow milk during Cheddar cheese manufacture. Indian J Dairy Sci 32:173–176

    Google Scholar 

  202. Tayefi-Nasrabadi H, Asdpour R (2008) Effect of heat treatment on buffalo (Bubalus bubalis) lactoperoxidase activity in raw milk. J Biol Sci 8:1310–1315

    Google Scholar 

  203. Terramoccia S, Burtocci S, Tripaldi C, Morrillotti F (1999) Development of buffalo milk yield. Survey on farms of Lazio region. Info Agric 51:63–68

    Google Scholar 

  204. Tufarelli V, Dario M, Laudadio V (2008) Diet composition and milk characteristics of Mediterranean water buffaloes reared in South Eastern Italy during spring season. Livest Res Rural Dev 20(10):1–7

    Google Scholar 

  205. Tunick MH, Malin EL (1997) Differential scanning calorimetry of water buffalo and cow milk fat in Mozzarella cheese. J Am Oil Chem Soc 47:1565–1568

    Google Scholar 

  206. Tyagi AK, Kewalramani N, Dhiman TR, Kayra H, Singhala KK, Kanwajiaa SK (2007) Enhancement of the conjugated linoleic acid content of buffalo milk and milk products through green fodder feeding. Anim Feed Sci Technol 133:351–358

    CAS  Google Scholar 

  207. Varricchio ML, Di Francia A, Masucci F, Romano R, Proto V (2007) Fatty acid composition of Mediterranean buffalo milk fat. Ital J Anim Sci 6(Suppl 1):509–511

    Google Scholar 

  208. Vohra V, Bhattacharya TK, Dayal S, Kumar P, Sharma A (2006) Genetic variants of beta-lactoglobulin gene and its association with milk composition traits in riverine buffalo. J Dairy Res 73:499–503

    CAS  Google Scholar 

  209. Wahba A (1979) Effect of some factors on the clotting time of buffaloes’ milk with Endothia parasitica rennet. Egypt J Dairy Sci 7:75–85

    CAS  Google Scholar 

  210. Woodward DR (1976) The chemistry of mammalian caseins: a review. Dairy Sci Abstr 38:137–150

    Google Scholar 

  211. Yousef GW, Ibrahim JM, Basily AS (1983) Biochemical and spectrographic studies on some trace elements in the milk of Egyptian buffaloes, cows and sheep. Indian J Dairy Sci 36:179–183

    Google Scholar 

  212. Zicarelli L (2004) Buffalo milk: its properties, dairy yield and Mozzarella production. Vet Res Commun 28:127–135

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Abd El-Salam.

About this article

Cite this article

Abd El-Salam, M.H., El-Shibiny, S. A comprehensive review on the composition and properties of buffalo milk. Dairy Science & Technol. 91, 663 (2011). https://doi.org/10.1007/s13594-011-0029-2

Download citation

Keywords

  • Buffalo milk
  • Major constituents
  • Minor constituents
  • Physical properties
  • Technological properties

关键词

  • 水牛乳
  • 主要组分
  • 次要组分
  • 物理特性
  • 工艺特性