Skip to main content

Mastitis impact on technological properties of milk and quality of milk products—a review

乳腺炎对乳制品质量和乳加工特性的影响

Abstract

The consequences of mastitis on the technological properties of milk and on the quality of milk products are widely reported in the literature. Besides, recent advances have shed light on the mechanisms involved in the udder response and subsequent milk changes in mastitis cases. This review gives an update on the literature regarding the impact of mastitis on milk composition and processing properties and collates recent data regarding the mechanisms involved in mastitis effects. It is an attempt to link field observations and experimental studies in order to better understand how mastites affect so dramatically the technological properties of milk. Both bovine and small ruminant milks are considered and a special emphasis is given on the role of staphylococci, streptococci, and Escherichia coli, the most common causative agents of mastitis.

乳腺炎对乳制品质量和乳加工特性的影响

摘要 关于乳房炎对乳的加工特性和乳制品质量影响的文献报道非常多。近年来关于此方面的研究重点在乳房炎对乳房的反应以及对影响乳成分变化的机制。本文对近年来乳房炎对乳组成和加工特性的影响及其影响机制方面的相关文献进行了对比和分析。目的是说明乳房炎的发生会对乳的加工特性产生巨大的作用。不但是对牛乳, 而且一些小反刍动物乳的加工特性都受乳房炎的影响。值得强调的一个现象是葡萄球菌、链球菌属和大肠杆菌是乳房炎发病最主要的原因。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Albenzio M, Caroprese M, Santillo A, Marino R, Taibi L, Sevi A (2004) Effects of somatic cell count and stage of lactation on the plasmin activity and cheese-making properties of ewe milk. J Dairy Sci 87:533–542

    CAS  Google Scholar 

  • Albenzio M, Caroprese M, Santillo A, Marino R, Muscio A, Sevi A (2005) Proteolytic patterns and plasmin activity in ewes’ milk as affected by somatic cell count and stage of lactation. J Dairy Res 72:86–92

    CAS  Google Scholar 

  • Ali EA, Andrews AT, Cheeseman GC (1980) Influence of elevated somatic cell count on casein distribution and cheese-making. J Dairy Res 47:393–400

    CAS  Google Scholar 

  • Alichanidis E, Polychroniadou A (1995) Special features of dairy products from ewe and goat milk from the physiochemicaland organoleptic point of view. In: IDF Greek National Committee of IDF CIRVAL Seminar, Creta, Greece, 21-10-1995, 122–127

  • Alichanidis E, Wrathall JHM, Andrews AT (1986) Heat-stability of plasmin (milk proteinase) and plasminogen. J Dairy Res 53:259–269

    CAS  Google Scholar 

  • Alluwaimi AM, Leutenegger CM, Farver TB, Rossitto PV, Smith WL, Cullor JS (2003) The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J Vet Med B Infect Dis Vet Public Health 50:105–111

    CAS  Google Scholar 

  • Almeida RA, Oliver SP (1995) Invasion of bovine mammary epithelial cells by Streptococcus dysgalactiae. J Dairy Sci 78:1310–1317

    CAS  Google Scholar 

  • Anderson M (1982) Factors affecting the distribution of lipoprotein lipase activity between serum and casein micelles in bovine milk. J Dairy Res 49:51–59

    CAS  Google Scholar 

  • Anderson M, Andrews AT (1977) Progressive changes in individual milk protein concentrations associated with high somatic cell counts. J Dairy Res 44:223–235

    CAS  Google Scholar 

  • Andreatta E, Fernandes AM, dos Santos MV, de Lima CG, Mussarelli C, Marquesi MC, de Oliveira CAF (2007) Effects of milk somatic cell count on physical and chemical characteristics of mozzarella cheese. Aust J Dairy Technol 62:166–170

    CAS  Google Scholar 

  • Ariznabarreta A, Gonzalo C, San Primitivo F (2002) Microbiological quality and somatic cell count of ewe milk with special reference to staphylococci. J Dairy Sci 85:1370–1375

    CAS  Google Scholar 

  • Ashworth US, Forster TL, Luedecke LO (1967) Relationship between California mastitis test reaction and composition of milk from opposite quarters. J Dairy Sci 50:1078–1082

    CAS  Google Scholar 

  • Auldist MJ, Hubble IB (1998) Effects of mastitis on raw milk and dairy products. Aust J Dairy Technol 53:28–36

    Google Scholar 

  • Auldist MJ, Coats S, Rogers GL, McDowell GH (1995) Changes in the composition of milk from normal and mastitic dairy cows during the lactation cycle. Aust J Exp Agric 35:427–436

    Google Scholar 

  • Auldist MJ, Coats S, Sutherland BJ, Mayes JJ, McDowell GH, Rogers GL (1996) Effects of somatic cell count and stage of lactation on raw milk composition and the yield and quality of Cheddar cheese. J Dairy Res 63:269–280

    CAS  Google Scholar 

  • Azzara CD, Dimick PS (1985a) Lipolytic enzyme-activity of macrophages in bovine mammary-gland secretions. J Dairy Sci 68:1804–1812

    CAS  Google Scholar 

  • Azzara CD, Dimick PS (1985b) Lipoprotein lipase activity of milk from cows with prolonged subclinical mastitis. J Dairy Sci 68:3171–3175

    CAS  Google Scholar 

  • Bachman KC, Hayen MJ, Morse D, Wilcox CJ (1988) Effect of pregnancy, milk yield, and somatic cell count on bovine milk fat hydrolysis. J Dairy Sci 71:925–931

    CAS  Google Scholar 

  • Ballou LU, Pasquini M, Bremel RD, Everson T, Sommer D (1995) Factors affecting herd milk composition and milk plasmin at four levels of somatic cell counts. J Dairy Sci 78:2186–2195

    CAS  Google Scholar 

  • Bank U, Ansorge S (2001) More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol 69:197–206

    CAS  Google Scholar 

  • Bannerman DD (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 87:10–25

    CAS  Google Scholar 

  • Bannerman DD, Paape MJ, Goff JP, Kimura K, Lippolis JD, Hope JC (2004a) Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet Res 35:681–700

    CAS  Google Scholar 

  • Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P (2004b) Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol 11:463–472

    Google Scholar 

  • Bannerman DD, Paape MJ, Chockalingam A (2006) Staphylococcus aureus intramammary infection elicits increased production of transforming growth factor-α, β1, and β2. Vet Immunol Immunopathol 112:309–315

    CAS  Google Scholar 

  • Bansal BK, Hamann J, Grabowskit NT, Singh KB (2005) Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J Dairy Res 72:144–152

    CAS  Google Scholar 

  • Baranova VS, Belov AD (1993) Cow milk proteins during mastitis infections. Voprosy Vet Biol 33–35

  • Barbano DM, Rasmussen RR, Lynch JM (1991) Influence of milk somatic-cell count and milk age on cheese yield. J Dairy Sci 74:369–388

    Google Scholar 

  • Barbano DM, Ma Y, Santos MV (2006) Influence of raw milk quality on fluid milk shelf life. J Dairy Sci 89:E15–E19

    Google Scholar 

  • Bareille N, Beaudeau F, Billon S, Robert A, Faverdin P (2003) Effects of health disorders on feed intake and milk production in dairy cows. Livest Prod Sci 83:53–62

    Google Scholar 

  • Barlowska J, Litwinczuk Z, Wolanciuk A, Brodziak A (2009) Relationship of somatic cell count to daily yield and technological usefulness of milk from different breeds of cows. Pol J Vet Sci 12:75–79

    CAS  Google Scholar 

  • Barrett FM, Kelly AL, McSweeney PLH, Fox PF (1999) Use of exogenous urokinase to accelerateproteolysis in Cheddar cheese during ripening. Int Dairy J 9:421–427

    CAS  Google Scholar 

  • Bartlett PC, van Wijk J, Wilson DJ, Green CD, Miller GY, Majewski GA, Heider LE (1991) Temporal patterns of lost milk production following clinical mastitis in a large Michigan Holstein herd. J Dairy Sci 74:1561–1572

    CAS  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products: an update. Int Dairy J 6:435–457

    CAS  Google Scholar 

  • Bastian ED, Hansen KG, Brown RJ (1991) Activation of plasmin with urokinase in ultrafilteredmilk for cheese manufacture. J Dairy Sci 74:3669–3676

    CAS  Google Scholar 

  • Baudry C, de Cremoux R, Chartier C, Perrin G (1997) Impact of mammary gland inflammation on milk yield and composition in goats. Vet Res 28:277–286

    CAS  Google Scholar 

  • Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342

    CAS  Google Scholar 

  • Benfeldt C, Sørensen J, Ellegård K, Petersen TE (1997) Heat treatment of cheese milk: effect on plasmin activity and proteolysis during cheese ripening. Int Dairy J 7:723–731

    CAS  Google Scholar 

  • Berge A, Sjobring U (1993) PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem 268:25417–25424

    CAS  Google Scholar 

  • Bergonier D, Lagriffoul G, Berthelot X, Barillet F (1994) Facteurs de variation non infectieux des comptages cellules somatiques chez les ovins et caprines laitiers. In: Proc. Int. Symp. Somatic Cells and Milk of Small Ruminants, Bella, Italy, 25-9-1994, 1–20

  • Bergonier D, de Cremoux R, Rupp R, Lagriffoul G, Berthelot X (2003) Mastitis of dairy small ruminants. Vet Res 34:689–716

    Google Scholar 

  • Bester BH, Lombard SH (1990) Influence of lysozyme on selected bacteria associated with Gouda cheese. J Food Prot 53:306–311

    CAS  Google Scholar 

  • Bianchi L, Bolla A, Budelli E, Caroli A, Casoli C, Pauselli M, Duranti E (2004) Effect of udder health status and lactation phase on the characteristics of Sardinian ewe milk. J Dairy Sci 87:2401–2408

    CAS  Google Scholar 

  • Boehmer JL, Bannerman DD, Shefcheck K, Ward JL (2008) Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J Dairy Sci 91:4206–4218

    CAS  Google Scholar 

  • Bogin E, Ziv G (1973) Enzymes and minerals in normal and mastitic milk. Cornell Vet 63:666–676

    CAS  Google Scholar 

  • Bonnefoy A, Legrand C (2000) Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 98:323–332

    CAS  Google Scholar 

  • Brink N, Lewis U, Williams D (1956) Pancreatic elastase: purification, properties, and function. J Biol Chem 222:705–720

    CAS  Google Scholar 

  • Bufano G, Dario C, Laudario V (1996) The characterisation of Leccese sheep: variations of chemical composition and lactodynamographic parameters in milk as related to somatic cell counts. In: Proceedings of the International Symposium of Somatic Cells and Milk of Small Ruminants 25–27 September 1996; Bella., Italy. 301–304

  • Caffin JP, Poutrel B, Rainard P (1983) Physiological and pathological factors influencing bovine immunoglobulin G1 concentration in milk. J Dairy Sci 66:2161–2166

    CAS  Google Scholar 

  • Carlsson A, Bjorck L, Persson K (1989) Lactoferrin and lysozyme in milk during acute mastitis and their inhibitory effect in Delvotest P. J Dairy Sci 72:3166–3175

    CAS  Google Scholar 

  • Caruolo EV (1974) Milk yield, composition, and somatic cells as a function of time of day in goats under a continuous lighting regimen. Br Vet J 130:380–387

    CAS  Google Scholar 

  • Cerami A (1992) Inflammatory cytokines. Clin Immunol Immunopathol 62:S3–S10

    CAS  Google Scholar 

  • Chaneton L, Tirante L, Maito J, Chaves J, Bussmann LE (2008) Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J Dairy Sci 91:1865–1873

    CAS  Google Scholar 

  • Chen PW, Chen WC, Mao FCH (2004) Increase of lactoferrin concentration in mastitic goat milk. J Vet Med Sci 66:345–350

    CAS  Google Scholar 

  • Chen SX, Wang JZ, Van Kessel JS, Ren FZ, Zeng SS (2010) Effect of somatic cell count in goat milk on yield, sensory quality, and fatty acid profile of semisoft cheese. J Dairy Sci 93:1345–1354

    CAS  Google Scholar 

  • Chockalingam A, Paape MJ, Bannerman DD (2005) Increased milk levels of transforming growth factor-α, β1, and β2 during Escherichia coli-induced mastitis. J Dairy Sci 88:1986–1993

    CAS  Google Scholar 

  • Considine T, Healy A, Kelly AL, McSweeney PLH (1999) Proteolytic specificity of elastase on bovine β-casein. Food Chem 66:463–470

    CAS  Google Scholar 

  • Considine T, Healy A, Kelly AL, McSweeney PLH (2000) Proteolytic specificity of elastase on bovine αs1-casein. Food Chem 69:19–26

    CAS  Google Scholar 

  • Considine T, Geary S, Kelly AL, McSweeney PLH (2002a) Proteolytic specificity of cathepsin G on bovine αs1- and β-caseins. Food Chem 76:59–67

    CAS  Google Scholar 

  • Considine T, McSweeney PLH, Kelly AL (2002b) The effect of lysosomal proteinases and plasmin on the rennet coagulation properties of skim milk. Milchwissenschaft 57:425–428

    CAS  Google Scholar 

  • Considine T, Healy A, Kelly AL, McSweeney PLH (2004) Hydrolysis of bovine caseins by cathepsin B, a cysteine proteinase indigenous to milk. Int Dairy J 14:117–124

    CAS  Google Scholar 

  • Cooney S, Tiernan D, Joyce P, Kelly AL (2000) Effect of somatic cell count and polymorphonuclear leucocyte content of milk on composition and proteolysis during ripening of Swiss-type cheese. J Dairy Res 67:301–307

    CAS  Google Scholar 

  • Cooray R (1996) Casein effects on the myeloperoxidase-mediated oxygen-dependent bactericidal activity of bovine neutrophils. Vet Immunol Immunopathol 51:55–65

    CAS  Google Scholar 

  • Coulon JB, Gasqui P, Barnouin J, Ollier A, Pradel P, Pomies D (2002) Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim Res 51:383–393

    CAS  Google Scholar 

  • Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    CAS  Google Scholar 

  • de Haas Y, Barkema HW, Veerkamp RF (2002) The effect of pathogen-specific clinical mastitis on the lactation curve for somatic cell count. J Dairy Sci 85:1314–1323

    Google Scholar 

  • Devriese LA, Schleifer KH, Adegoke GO (1985) Identification of coagulase-negative staphylococci from farm animals. J Appl Bacteriol 58:45–55

    CAS  Google Scholar 

  • Diaz JR, Muelas R, Segura R, Peris CMP (1996) Effect of mastitis on milk composition in manchega ewes: preliminary results, in: Proceedings of the International Symposium of Somatic Cells and Milk of Small Ruminants 25–27 September 1996; Bella, Italy 305–309

  • Djabri B, Bareille N, Beaudeau F, Seegers H (2002) Quarter milk somatic cell count in infected dairy cows: a meta-analysis. Vet Res 33:335–357

    Google Scholar 

  • Donelly WJ, Barry JG (1983) Casein compositional studies. III. Changes in Irish milk for manufacturing and role of milk protease. J Dairy Res 50:433

    Google Scholar 

  • Dufour D, Jameh N, Dary A, Le Roux Y (2009) Short communication: can the mammopathogenic Escherichia coli P4 strain have a direct role on the caseinolysis of milk observed during bovine mastitis? J Dairy Sci 92:1398–1403

    CAS  Google Scholar 

  • Duranti E, Casoli C (1991) Variations in the nitrogen composition and in the lactodinamographic parameters of ewe’s milk in relation to somatic cell content. Zootec Nutr Anim 17:99–105

    Google Scholar 

  • El-Saied UM, Carriedo JA, De la Fuente LF, San Primitivo F (1999) Genetic parameters of lactation cell counts and milk and protein yields in dairy ewes. J Dairy Sci 82:639–644

    CAS  Google Scholar 

  • Emmons DB, Elliot JA, Beckett DC (1963) Agglutination of starter bacteria, sludge formation and slow acid development in cottage cheese manufacture. J Dairy Sci 46:600

    Google Scholar 

  • Emmons DB, Elliott JA, Beckett DC (1966) Effect of lactic-streptococcal agglutinins in milk on curd formation and manufacture of cottage cheese. J Dairy Sci 49:1361

    Google Scholar 

  • Erwin RE, Randolph HE (1975) Influence of mastitis on properties of milk. XI. Fat globule membrane. J Dairy Sci 58:9–12

    CAS  Google Scholar 

  • Farkye NY, Fox PF (1992) Contribution of plasmin to Cheddar cheese ripening: effect of added plasmin. J Dairy Res 59:209–216

    CAS  Google Scholar 

  • Farkye NT, Landkammer CF (1992) Milk plasmin activity influence on cheddar cheese quality during ripening. J Food Sci 57:622–624

    CAS  Google Scholar 

  • Fernandes AM, Oliveira CAF, Lima CG (2006) Effects of somatic cell counts in milk on physical and chemical characteristics of yoghurt. Int Dairy J 17:111–115

    Google Scholar 

  • Fernandes AM, Moretti TS, Bovo F, Lima CG, Oliveira CAF (2008) Effect of somatic cell counts on lipolysis, proteolysis and apparent viscosity of UHT milk during storage. Int J Dairy Technol 61:327–332

    CAS  Google Scholar 

  • Fitz-Gerald CH, Deeth HC, Kitchen BJ (1981) The relationship between the levels of free fatty acids, lipoprotein lipase, carboxylesterase, N-acetyl-beta-d-glucosaminidase, somatic cell count and other mastitis indices in bovine milk. J Dairy Res 48:253–265

    CAS  Google Scholar 

  • Fox PF, McSweeney PLH (1996) Proteolysis in cheese. Food Rev Int 12:457–509

    CAS  Google Scholar 

  • Galina MA, Morales R, Lοpez B, Carmona MA (1996) Effect of somatic cell count on lactation and soft cheese yield by dairy goats. Small Rumin Res 21:251–257

    Google Scholar 

  • Gargouri A, Hamed H, El Feki A (2008) Total and differential bulk cow milk somatic cell counts and their relation with lipolysis. Livest Sci 113:274–279

    Google Scholar 

  • Gonzalo C, Carriedo JA, Gomez JD, Gomez LD, San PF (1994) Diurnal variation in the somatic cell count of ewe milk. J Dairy Sci 77:1856–1859

    CAS  Google Scholar 

  • Gonzalo C, Ariznabarreta A, Carriedo JA, San Primitivo F (2002) Mammary pathogens and their relationship to somatic cell count and milk yield losses in dairy ewes. J Dairy Sci 85:1460–1467

    CAS  Google Scholar 

  • Grandison AS, Ford GD (1986) Effects of variations in somatic cell count on the rennet coagulation properties of milk and on the yields, composition and quality of cheddar cheese. J Dairy Res 53:645–655

    CAS  Google Scholar 

  • Grazia LC, Castagnetti GB, Losi B (1984) Manufacture of Grana cheese with lysozyme. Acidification of whey and sensitivity of thermophilic lactic acid bacteria. Sci Tecn Latt Cas 35:384–393

    CAS  Google Scholar 

  • Griesbeck-Zilch B, Meyer HHD, Kuhn C, Schwerin M, Wellnitz O (2008) Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J Dairy Sci 91:2215–2224

    CAS  Google Scholar 

  • Grieve PA, Kitchen BJ (1985) Proteolysis in milk: the significance of proteinases originating from milk leucocytes and a comparison of the action of leucocyte, bacterial and natural milk proteinases on casein. J Dairy Res 52:101–112

    CAS  Google Scholar 

  • Grohn YT, Wilson DJ, Gonzalez RN, Hertl JA, Schulte H, Bennett G, Schukken YH (2004) Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J Dairy Sci 87:3358–3374

    CAS  Google Scholar 

  • Gunther J, Koczan D, Yang W, Nurnberg G, Repsilber D, Schuberth HJ, Park Z, Maqbool N, Molenaar A, Seyfert HM (2009) Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet Res 40:31–45

    Google Scholar 

  • Haddadi K, Moussaoui F, Hebia I, Laurent F, Le Roux Y (2005) E.coli proteolytic activity in milk and casein breakdown. Reprod Nutr Dev 45:485–496

    CAS  Google Scholar 

  • Haddadi K, Prin-Mathieu C, Moussaoui F, Faure GC, Vangroenweghe F, Burvenich C, Le Roux Y (2006) Polymorphonuclear neutrophils and Escherichia coli proteases involved in proteolysis of casein during experimental E. coli mastitis. Int Dairy J 16:639–647

    CAS  Google Scholar 

  • Haenlein GF, Schultz LH, Zikakis JP (1973) Composition of proteins in milk with varying leucocyte contents. J Dairy Sci 56:1017–1024

    CAS  Google Scholar 

  • Hagiwara K, Yamanaka H, Hisaeda K, Taharaguchi S, Kirisawa R, Iwai H (2001) Concentrations of IL-6 in serum and whey from healthy and mastitic cows. Vet Res Commun 25:99–108

    CAS  Google Scholar 

  • Hagiwara S, Kawai K, Anri A, Nagahata H (2003) Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J Vet Med Sci 65:319–323

    CAS  Google Scholar 

  • Hagnestam C, Emanuelson U, Berglund B (2007) Yield losses associated with clinical mastitis occurring in different weeks of lactation. J Dairy Sci 90:2260–2270

    CAS  Google Scholar 

  • Halasa T, Nielen M, Huirne RBM, Hogeveen H (2009) Stochastic bio-economic model of bovine intramammary infection. Livest Sci 124:295–305

    Google Scholar 

  • Harmon RJ, Schanbacher FL, Ferguson LC, Smith KL (1976) Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and alpha-lactalbumin during acute experimental and natural coliform mastitis in cows. Infect Immun 13:533–542

    CAS  Google Scholar 

  • Hettinga KA, van Valenberg HJF, Lam TJGM, van Hooijdonk ACM (2009) The origin of the volatile metabolites found in mastitis milk. Vet Microbiol 137:384–387

    CAS  Google Scholar 

  • Hirano R, Hirano M, Oooka M, Dosako S, Nakajima I, Igoshi K (1998) Lactoperoxidase effects on rheological properties of yogurt. J Food Sci 63:35–38

    CAS  Google Scholar 

  • Hiss S, Meyer T, Sauerwein H (2008) Lactoferrin concentrations in goat milk throughout lactation. Small Rumin Res 80:87–90

    Google Scholar 

  • Hodgkinson A, Ross K, Fahey S, Prosser C (2008) Quantification of lactoferrin in milk from New Zealand dairy goats. In: Proceedings of the New Zealand Society of Animal Production 68th Conference, Brisbane, Australia, 24-6-2008, 166–169

  • Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD (2004) Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 4:2094–2100

    CAS  Google Scholar 

  • Hortet P, Seegers H (1998) Calculated milk production losses associated with elevated somatic cell counts in dairy cows: review and critical discussion. Vet Res 29:497–510

    CAS  Google Scholar 

  • Hurley WL, Aslam M, Hegarty HM, Morkoc A (1994) Synthesis of lactoferrin and casein by explants of bovine mammary tissue. Cell Biol Int 18:629–637

    CAS  Google Scholar 

  • Hurley MJ, Larsen LB, Kelly AL, McSweeney PLH (2000) The milk acid proteinase cathepsin D: a review. Int Dairy J 10:673–681

    CAS  Google Scholar 

  • Ip MM, Shoemaker SF, Darcy KM (1992) Regulation of rat mammary epithelial cell proliferation and differentiation by tumor necrosis factor-alpha. Endocrinology 130:2833–2844

    CAS  Google Scholar 

  • Jaeggi JJ, Govindasamy-Lucey S, Berger YM, Johnson ME, McKusick BC, Thomas DL, Wendorff WL (2003) Hard ewe’s milk cheese manufactured from milk of three different groups of somatic cell counts. J Dairy Sci 86:3082–3089

    CAS  Google Scholar 

  • Janota BL, Glabowna M (1982) Atomic absorption spectrophotometry of milk for prognosis of mastitis. Milchwissenschaft 37:13–16

    Google Scholar 

  • Jaubert G, Gay jacquin, Perrin G (1996) Somatic cell counts and biochemical and technological characteristics of goat milk. In: The International Symposium on Somatic Cells and Milk of Small Ruminants, Bella, italy, 25-9-1996, 263–268

  • Kalit S, Havranek JL, Kaps M (2002) Plasminogen activation and somatic cell count (SCC) in cheese milk: influence on Podravec cheese ripening. Milchwissenschaft 57:380–382

    CAS  Google Scholar 

  • Kaminogawa S, Yamauchi K, Miyazawa S, Koga Y (1980) Degradation of casein components by acid protease of bovine-milk. J Dairy Sci 63:701–704

    CAS  Google Scholar 

  • Karlsson A, Arvidson S (2002) Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect Immun 70:4239–4246

    CAS  Google Scholar 

  • Kawai K, Hagiwara S, Anri A, Nagahata H (1999) Lactoferrin concentration in milk of bovine clinical mastitis. Vet Res Commun 23:391–398

    CAS  Google Scholar 

  • Kelly AL, O’Flaherty F, Fox PF (2006) Indigenous proteolytic enzymes in milk: a brief overview of the present state of knowledge. Int Dairy J 16:563–572

    CAS  Google Scholar 

  • Kitchen BJ (1981) Review of the progress of Dairy Science: bovine mastitis:milk compositional cahnges and related diagnostic tests. J Dairy Res 48:167–188

    CAS  Google Scholar 

  • Kitchen BJ, Middleton G, Durward IG, Andrews RJ, Salmon MC (1980) Mastitis diagnostic tests to estimate mammary gland epithelial cell damage. J Dairy Sci 63:978–983

    CAS  Google Scholar 

  • Kitchen BJ, Middleton G, Kwee WS, Andrews RJ (1984) N-Acetyl-beta-d-glucosaminidase (NAGase) levels in bulk herd milk. J Dairy Res 51:227–232

    CAS  Google Scholar 

  • Klei L, Yun J, Sapru A, Lynch J, Barbano D, Sears P, Galton D (1998) Effects of milk somatic cell count on cottage cheese yield and quality. J Dairy Sci 81:1205–1213

    CAS  Google Scholar 

  • Komine K, Kuroishi T, Komine Y, Watanabe K, Kobayashi J, Yamaguchi T, Kamata S, Kumagai K (2004) Induction of nitric oxide production mediated by tumor necrosis factor alpha on staphylococcal enterotoxin C-stimulated bovine mammary gland cells. Clin Diagn Lab Immunol 11:203–210

    CAS  Google Scholar 

  • Kushibiki S, Hodate K, Shingu H, Obara Y, Touno E, Shinoda M, Yokomizo Y (2003) Metabolic and lactational responses during recombinant bovine tumor necrosis factor-α treatment in lactating cows. J Dairy Sci 86:819–827

    CAS  Google Scholar 

  • Kuusela P, Saksela O (1990) Binding and activation of plasminogen at the surface of Staphylococcus aureus—increase in affinity after conversion to the lys form of the ligand. Eur J Biochem 193:759–765

    CAS  Google Scholar 

  • Kuusela P, Ullberg M, Kronvall G, Tervo T, Tarkkanen A, Saksela O (1992) Surface-associated activation of plasminogen on gram-positive bacteria - effect of plasmin on the adherence of Staphylococcus aureus. Acta Ophthalmol 70:42–46

    Google Scholar 

  • Lahteenmaki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552

    CAS  Google Scholar 

  • Larsen LB, Benfeldt C, Rasmussen LK, Petersen TE (1996) Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation. J Dairy Res 63:119–130

    CAS  Google Scholar 

  • Larsen LB, Wium H, Benfeldt C, Heegaard CW, Ardo Y, Qvist KB, Petersen TE (2000) Bovine milk procathepsin D: presence and activity in heated milk and in extracts of rennet-free UF-Feta cheese. Int Dairy J 10:67–73

    CAS  Google Scholar 

  • Larsen LB, Rasmussen MD, Bjerring M, Nielsen JH (2004) Proteases and protein degradation in milk from cows infected with Streptococcus uberis. Int Dairy J 14:899–907

    CAS  Google Scholar 

  • Larsen LB, McSweeney PLH, Hayes MG, Andersen JB, Ingvartsen KL, Kelly AL (2006) Variation in activity and heterogeneity of bovine milk proteases with stage of lactation and somatic cell count. Int Dairy J 16:1–8

    CAS  Google Scholar 

  • Laurinaviciute V, Siugzdaite J, Urbsienne D (2004) Quality and composition of milk with different somatic cell count of two breeds of dairy goats. Med Weter 60:1137–1248

    Google Scholar 

  • Le Mens P, Dalmas S, Humbert G (1996) Relations entre l’activité de la N-acetyl-glucosaminidase (NAG-ase), le nombre de cellules,l’aptitude à la coagulation du lait et le statut infectieux mammairechez la chèvre, In: Proceedings of the International Symposium on Somatic Cells and Milk of Small Ruminants, Bella,Italy, 25-9-1996, 311–312

  • Le Roux Y, Colin O, Laurent F (1995) Proteolysis in samples of quarter milk with varying somatic cell counts. 1. Comparison of some indicators of endogenous proteolysis in milk. J Dairy Sci 78:1289–1297

    Google Scholar 

  • Le Roux Y, Laurent F, Moussaoui F (2003) Polymorphonuclear proteolytic activity and milk composition change. Vet Res 34:629–645

    Google Scholar 

  • Leavitt BE, Oleary J, Harmon RJ, Hicks CL (1982) Effect of mastitis on cheese yield, milk-production, milk-composition and starter culture activity. J Food Prot 45:1176

    Google Scholar 

  • Lee SC, Yu JH, Back YJ, Yoon YC (1991) The influence of mastitis on the quality of raw milk and cheese. Kor J Dairy Sci 13:217–223

    Google Scholar 

  • Lee JW, Paape MJ, Zhao X (2003) Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli mastitis in mice. Vet Res 34:307–316

    CAS  Google Scholar 

  • Lee JW, Bannerman DD, Paape MJ, Huang MK, Zhao X (2006) Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Vet Res 37:219–229

    CAS  Google Scholar 

  • Lehtolainen T, Rontved C, Pyorala S (2004) Serum amyloid A and TNF alpha in serum and milk during experimental endotoxin mastitis. Vet Res 35:651–659

    CAS  Google Scholar 

  • Leitner G, Chaffer M, Caraso Y, Ezra E, Kababea D, Winkler M, Glickman A, Saran A (2003) Udder infection and milk somatic cell count, NAGase activity and milk composition-fat, protein and lactose-in Israeli-Assaf and Awassi sheep. Small Rumin Res 49:157–164

    Google Scholar 

  • Leitner G, Chaffer M, Shamay A, Shapiro F, Merin U, Ezra E, Saran A, Silanikove N (2004a) Changes in milk composition as affected by subclinical mastitis in sheep. J Dairy Sci 87:46–52

    CAS  Google Scholar 

  • Leitner G, Merin U, Silanikove N (2004b) Changes in milk composition as affected by subclinical mastitis in goats. J Dairy Sci 87:1719–1726

    CAS  Google Scholar 

  • Leitner G, Merin U, Silanikove N, Ezra E, Chaffer M, Gollop N, Winkler M, Glickman A, Saran A (2004c) Effect of subclinical intramammary infection on somatic cell counts, NAGase activity and gross composition of goats’ milk. J Dairy Res 71:311–315

    CAS  Google Scholar 

  • Leitner G, Krifucks O, Merin U, Lavi Y, Silanikove N (2006) Interactions between bacteria type, proteolysis of casein and physico-chemical properties of bovine milk. Int Dairy J 16:648–654

    CAS  Google Scholar 

  • Lemieux L, Simard RE (1994) Astringency, a textural defect in dairy-products. Lait 74:217–240

    CAS  Google Scholar 

  • Lincoln RA, Leigh JA (1998) Characterization of the interaction of bovine plasmin with Streptococcus uberis. J Appl Microbiol 84:1104–1110

    CAS  Google Scholar 

  • Long E, Capuco AV, Wood DL, Sonstegard T, Tomita G, Paape MJ, Zhao X (2001) Escherichia coli induces apoptosis and proliferation of mammary cells. Cell Death Differ 8:808–816

    CAS  Google Scholar 

  • Lucas PS (1962) What causes a spongy formation in cottage cheese? Am Milk Rev 24:74

    Google Scholar 

  • Lucey S, Rowlands GJ, Russell AM (1986) Short-term associations between disease and milk yield of dairy cows. J Dairy Res 53:7–15

    CAS  Google Scholar 

  • Lutzow YC, Donaldson L, Gray CP, Vuocolo T, Pearson RD, Reverter A, Byrne KA, Sheehy PA, Windon R, Tellam RL (2008) Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet Res 4:18

    Google Scholar 

  • Ma Y, Ryan C, Barbano DM, Galton DM, Rudan MA, Boor KJ (2000) Effects of somatic cell count on quality and shelf-life of pasteurized fluid milk. J Dairy Sci 83:264–274

    CAS  Google Scholar 

  • Manser PA (1986) Prevalence, causes and laboratory diagnosis of subclinical mastitis in the goat. Vet Rec 118:552–554

    CAS  Google Scholar 

  • Marino R, Considine T, Sevi A, McSweeney PLH, Kelly AL (2005) Contribution of proteolytic activity associated with somatic cells in milk to cheese ripening. Int Dairy J 15:1026–1033

    CAS  Google Scholar 

  • Mazal G, Vianna PCB, Santos MV, Gigante ML (2007) Effect of somatic cell count on Prato cheese composition. J Dairy Sci 90:630–636

    CAS  Google Scholar 

  • McSweeney PLH, Walsh EM, Fox PF, Cogan TM, Drinan FD, Castelo-Gonzalez M (1994) A procedure for the manufacture of cheddar cheese under controlled bacteriological conditions and the effect of adjunct lactobacilli on cheese quality. Ir J Agric Food Res 33:183–192

    Google Scholar 

  • McSweeney PLH, Fox PF, Olson NF (1995) Proteolysis of bovine caseins by cathepsin-D—preliminary-observations and comparison with chymosin. Int Dairy J 5:321–336

    CAS  Google Scholar 

  • Mebmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-a and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337

    CAS  Google Scholar 

  • Merin U, Fleminger G, Komanovsky J, Silanikove N, Bernstein S, Leitner G (2008) Subclinical udder infection with Streptococcus dysgalactiae impairs milk coagulation properties: the emerging role of proteose peptones. Dairy Sci Technol 88:407–419

    CAS  Google Scholar 

  • Michelutti I, Le Roux Y, Rainard P, Poutrel B, Laurent F (1999) Sequential changes in milk protein composition after experimental Escherichia coli mastitis. Lait 79:535–549

    CAS  Google Scholar 

  • Miedzobrodzki J, Naidu AS, Watts JL, Ciborowski P, Palm K, Wadstrom T (1989) Effect of milk on fibronectin and collagen type I binding to Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. J Clin Microbiol 27:540–544

    CAS  Google Scholar 

  • Miller RH, Emanuelsson U, Persson E, Brolund E, Philipsson L, Funke H (1983) Relationships of milk somatic cell counts to daily milk yield and composition. Acta Agric Scand 33:209–223

    Google Scholar 

  • Mitchell GE, Rogers SA, Houlihan DB, Tucker VC, Kitchen BJ (1986) The relationshiop between somatic cell count, composition and manufacturing properties of bulk milk. 1. Composition of farm bulk milk. Aust J Dairy Technol 41:9–12

    CAS  Google Scholar 

  • Moir E, Booth NA, Bennett B, Robbie BA (2001) Polymorphonuclear leukocytes mediate endogenous thrombus lysis via a uPA-dependent mechanism. Brit J Haematol 113:72–80

    CAS  Google Scholar 

  • Morgan F, Gaspard CE (1999) Influence des cellules somatiques sur les qualités technologiques du lait de chèvre et sur les caractéristiques des fromages de chèvre, in: 6èmes journées Rencontres Recherches Ruminants, Paris, France, p 317

  • Moussaoui F, Michelutti I, Le Roux Y, Laurent F (2002) Mechanisms involved in milk endogenous proteolysis induced by a lipopolysaccharide experimental mastitis. J Dairy Sci 85:2562–2570

    CAS  Google Scholar 

  • Moussaoui F, Laurent F, Girardet JM, Humbert G, Gaillard JL, Le Roux Y (2003) Characterization and proteolytic origins of specific peptides appearing during lipopolysaccharide experimental mastitis. J Dairy Sci 86:1163–1170

    CAS  Google Scholar 

  • Moussaoui F, Vangroenweghe F, Haddadi K, Le Roux Y, Laurent F, Duchateau L, Burvenich C (2004) Proteolysis in milk during experimental Escherichia coli mastitis. J Dairy Sci 87:2923–2931

    CAS  Google Scholar 

  • Muir DD (1996) The shelf-life of dairy products.1. Factors influencing raw milk and fresh products. J Soc Dairy Technol 49:24–32

    CAS  Google Scholar 

  • Munro GL, Grieve PA, Kitchen BJ (1984) Effects of mastitis on milk yield, milk composition, processing properties and yield and quality of milk products. Aust J Dairy Technol 39:7–16

    CAS  Google Scholar 

  • Murphy SC, Cranker K, Senyk GF, Barbano DM, Saeman AI, Galton DM (1989) Influence of bovine mastitis on lipolysis ond proteolysis in milk. J Dairy Sci 72:620–626

    CAS  Google Scholar 

  • Nabhan MA, Girardet JM, Campagna S, Gaillard JL, Le Roux Y (2004) Isolation and characterization of copolymers of β-lactoglobulin, α-lactalbumin, κ-casein, and α(S1)-casein generated by pressurization and thermal treatment of raw milk. J Dairy Sci 87:3614–3622

    CAS  Google Scholar 

  • Nakajima Y, Mikami O, Yoshioka M, Motoi Y, Ito T, Ishikawa Y, Fuse M, Nakano K, Yasukawa K (1997) Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) activities in the sera and milk of cows with naturally occurring coliform mastitis. Res Vet Sci 62:297–298

    CAS  Google Scholar 

  • Napoli A, Aiello D, Di Donna L, Prendushi H, Sindona G (2007) Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF. Anal Chem 79:5941–5948

    CAS  Google Scholar 

  • Neviani EM, Tarelli GT, Divizia R (1996) Lysozyme resistance of lactic acid bacteria. Latte 3:90–91

    Google Scholar 

  • Nudda A, Feligini M, Battacone G, Macciota NPP, Pulina G (2003) Effects of lactation stage, parity, β-lactoglobulin genotype and milk SCC on whey protein composition in Sarda dairy ewes. Ital J Anim Sci 2:29–39

    Google Scholar 

  • O’Brien B, Meaney WJ, McDonagh D, Kelly A (2001) Influence of somatic cell count and storage interval on composition and processing characteristics of milk from cows in late lactation. Aust J Dairy Technol 56:213–218

    Google Scholar 

  • O’Driscoll BM, Rattray FP, McSweeney PLH, Kelly AL (1999) Protease activities in raw milk determined using a synthetic heptapeptide substrate. J Food Sci 64:606–611

    Google Scholar 

  • O’Farell P, Sheenan JJ, Wilkinson MG, Harrington D, Kelly AL (2002) Influence of addition of plasmin or mastitic milk to cheese milk on quality of smear-ripened cheese. Lait 82:305–316

    Google Scholar 

  • Ogola H, Shitandi A, Nanua J (2007) Effect of mastitis on raw milk compositional quality. J Vet Sci 8:237–242

    Google Scholar 

  • Ohtsuka H, Kudo K, Mori K, Nagai F, Hatsugaya A, Tajima M, Tamura K, Hoshi F, Koiwa M, Kawamura S (2001) Acute phase response in naturally occurring coliform mastitis. J Vet Med Sci 63:675–678

    CAS  Google Scholar 

  • Oliveira CAF, Fernandes AM, Neto OCC, Fonseca LFL, Silva EOT, Balian SC (2002) Composition and sensory evaluation of whole yogurt produced from milk with different somatic cell counts. Aust J Dairy Technol 57:192–196

    Google Scholar 

  • Ollivier-Bousquet M (1998) Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J Mammary Gland Biol Neoplasia 3:303–313

    CAS  Google Scholar 

  • Opdenakker G, van den Steen PE, van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22:571–579

    CAS  Google Scholar 

  • Ostdal H, Bjerrum MJ, Pedersen JA, Andersen HJ (2000) Lactoperoxidase-induced protein oxidation in milk. J Agric Food Chem 48:3939–3944

    CAS  Google Scholar 

  • Ostergaard S, Grohn YT (1999) Effects of diseases on test day milk yield and body weight of dairy cows from Danish research herds. J Dairy Sci 82:1188–1201

    CAS  Google Scholar 

  • Othmane MH, Carriedo JA, De la Fuente LF, San Primitivio F (2002) Factors affecting test-day milk composition in dairy ewes, and relationships amongst various milk components. J Dairy Res 69:53–62

    CAS  Google Scholar 

  • Ottogalli GA, Galli LL, Camaschella P (1983) Effect of lysozyme hydrochloride (Afilact) on lactic acid bacteria in whey starters for Grana cheese. Ind Latte 1983:43–48

    Google Scholar 

  • Ozer B, Grandison A, Robinson R, Atamer M (2003) Effects of lactoperoxidase and hydrogen peroxide on rheological properties of yoghurt. J Dairy Res 70:227–232

    Google Scholar 

  • Pancholi V, Fischetti VA (1998) α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    CAS  Google Scholar 

  • Pasquini LU, Greppi GF, Ballou RD, Bremel RD (1996) Detection of proteolytic degradation of milk proteins and relationship with different levels of SCC in Italian goats. In: The International Symposium on Somatic Cells and Milk of Small Ruminants, Bella, Italy, 25-9-1996, pp 275–281

  • Pasquini S, Peralta S, Missiaglia E, Carta L, Lemoine NR (2002) Prime-boost vaccines encoding an intracellular idiotype/GM-CSF fusion protein induce protective cell-mediated immunity in murine pre-B cell leukemia. Gene Ther 9:503–510

    CAS  Google Scholar 

  • Pellegrini O, Remeuf F, Rivemale M, Barillet F (1997) Renneting properties of milk from individual ewes: influence of genetic and non-genetic variables, and relationship with physicochemical characteristics. J Dairy Res 64:355–366

    CAS  Google Scholar 

  • Pirisi A, Piredda G, Podda F, Pintus S (1996) Effect of somatic cell count on sheep milk composition and cheese-making properties. Somat Cells Milk Small Rumin 245–251

  • Pirisi A, Piredda G, Corona M, Pes M, Pintus S, Ledda A (2000) Influence of somatic cell count on ewe’s milk composition, cheese yield and cheese quality. In: Proceedings of 6th Great lakes Dairy Sheep Symposium, Guelph, Canada, pp 47–59

  • Pisoni G, Fusi E, Cheli F, Rebucci R, Moroni P, Balci A (2004a) Changes in milk composition in dairy goast as affected by subclinical infection with Staphylococcus aureus. In: Book of abstracts of The 8th International Conference on Goats, South Africa, 4-7-2004, p 63

  • Pisoni G, Fusi E, Cheli F, Rebucci R, Moroni P, Baldi A (2004b) Mammary gland health status and plasmin–plasminogen systemin dairy goat. In: Book of Abstracts of the 8th InternationalConference on Goats, South Africa, 4-7-2004, p 90

  • Pizzillo M, Cogliandro E, Rubino R, Fedele V (1996) Relationship between somatic cells and milk quality in different goat production systems. In: Proceedings of the International Symposium on Somatic Cells and Milk of Small Ruminants, Bella, Italy, 25-9-1996, pp 269–273

  • Politis I, Ng-Kwai-Hang KF (1988a) Association between somatic cell count of milk and cheese yielding capacity. J Dairy Sci 71:1720–1727

    Google Scholar 

  • Politis I, Ng-Kwai-Hang KF (1988b) Effects of somatic cell count on milk composition and cheese making efficiency. J Dairy Sci 71:1711–1719

    CAS  Google Scholar 

  • Politis I, Hang KFNK, Giroux RN (1989a) Environmental-factors affecting plasmin activity in milk. J Dairy Sci 72:1713–1718

    CAS  Google Scholar 

  • Politis I, Lachance E, Block E, Turner JD (1989b) Plasmin and plasminogen in bovine milk: a relationship with involution? J Dairy Sci 72:900–906

    CAS  Google Scholar 

  • Politis I, Zhao X, McBride BW, Burton JH, Turner JD (1991) Plasminogen activator production by bovine milk macrophages and blood monocytes. Am J Vet Res 52:1208–1213

    CAS  Google Scholar 

  • Poutrel B, Caffin JP, Rainard P (1983) Physiological and pathological factors influencing bovine serum albumin content of milk. J Dairy Sci 66:535–541

    CAS  Google Scholar 

  • Prin-Mathieu C, Le Roux Y, Faure GC, Laurent F, Bene MC, Moussaoui F (2002) Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin Diagn Lab Immunol 9:812–817

    CAS  Google Scholar 

  • Pyörälä S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34:565–578

    Google Scholar 

  • Rainard P, Caffin JP (1983) Sequential-changes in serum-albumin, immunoglobulin (Igg1, Igg2, Igm) and lactoferrin concentrations in milk following infusion of Escherichia coli into the udder of immunized and unimmunized cows. Ann Rech Vét 14:271–279

    CAS  Google Scholar 

  • Rainard P, Riollet C (2006) Innate immunity of the bovine mammary gland. Vet Res 37:369–400

    CAS  Google Scholar 

  • Rainard P, Poutrel B, Caffin JP (1982) Lactoferrin and transferrin in bovine milk in relation to certain physiological and pathological factors. Ann Rech Vét 13:321–328

    CAS  Google Scholar 

  • Rajala-Schultz PJ, Grohn YT, McCulloch CE, Guard CL (1999) Effects of clinical mastitis on milk yield in dairy cows. J Dairy Sci 82:1213–1220

    CAS  Google Scholar 

  • Rambeaud M, Almeida RA, Pighetti GM, Oliver SP (2003) Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96:193–205

    CAS  Google Scholar 

  • Randolph HE, Erwin RE (1974) Influence of mastitis on properties of milk. X. Fatty acid composition. J Dairy Sci 57:865–868

    CAS  Google Scholar 

  • Raulo SM, Sorsa T, Tervahartiala T, Latvanen T, Pirila E, Hirvonen J, Maisi P (2002) Increase in milk metalloproteinase activity and vascular permeability in bovine endotoxin-induced and naturally occurring Escherichia coli mastitis. Vet Immunol Immunopathol 85:137–145

    CAS  Google Scholar 

  • Raynal-Ljutovac K, Gaborit P, Lauret A (2005) The relationship between quality criteria of goat milk, its technological properties and the quality of the final products. Small Rumin Res 60:167–177

    Google Scholar 

  • Raynal-Ljutovac K, Pirisi A, De Cremoux R, Gonzalo C (2007) Somatic cells of goat and sheep milk: analytical, sanitary, productive and technological aspects. Small Rumin Res 68:126–144

    Google Scholar 

  • Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69:1521–1527

    CAS  Google Scholar 

  • Rejman JJ, Turner JD, Oliver SP (1993) Influence of recombinant bovine cytokines on proliferation of a bovine mammary epithelial cell line. Cell Biol Int 17:619–621

    CAS  Google Scholar 

  • Revilla I, Rodriguez-Nogales JM, Vivar-Quintana AM (2007) Proteolysis and texture of hard ewes’ milk cheese during ripening as affected by somatic cell counts. J Dairy Res 74:127–136

    CAS  Google Scholar 

  • Revilla I, Rodriguez-Nogales JM, Vivar-Quintana AM (2009) Effect of somatic cell counts on ewes’ milk protein profile and cheese-making properties in different sheep breeds reared in Spain. J Dairy Res 76:210–215

    CAS  Google Scholar 

  • Riollet C, Rainard P, Poutrel B (2000) Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin Diagn Lab Immunol 7:161–167

    CAS  Google Scholar 

  • Rogers SA, Mitchell GE (1994) The relationship between somatic-cell count, composition and manufacturing properties of bulk milk: cheddar cheese and skim-milk yogurt. Aust J Dairy Technol 49:70–74

    Google Scholar 

  • Rogers SA, Mitchell GE, Bartley JP (1989a) The relationship between somatic cell count, composition and manufacturing properties of bulk milk. 4. Non-protein constituents. Aust J Dairy Technol 44:53–56

    CAS  Google Scholar 

  • Rogers SA, Slattery SL, Mitchell GE, Hirst PA, Grieve PA (1989b) The relationship between somatic cell count, composition and manufacturing properties of bulk milk. 3.Individual proteins. Aust J Dairy Technol 44:49–52

    CAS  Google Scholar 

  • Romero G, Sendra E, Muelas R, az-Sanchez JR (2010) Effect of electrical conductivity of goat’s milk on characteristics of fresh cheese. Milchwissenschaft 65:56–59

    CAS  Google Scholar 

  • Rosey EL, Lincoln RA, Ward PN, Yancey RJ, Leigh JA (1999) PauA: a novel plasminogen activator from Streptococcus uberis (vol 178, pg 27, 1999). FEMS Microbiol Lett 180:353

    Google Scholar 

  • Rouseff RL (1990) Bitterness in food products: an overview. In: Rousseff RL (ed) Bitterness in foods and beverages. Elsevier, Amsterdam, pp 1–14

    Google Scholar 

  • Saeman AI, Verdi RJ, Galton DM, Barbano DM (1988) Effect of mastitis on proteolytic activity in bovine-milk. J Dairy Sci 71:505–512

    CAS  Google Scholar 

  • Salih AM, Anderson M (1979) Observations on the influence of high cell count on lipolysis in bovine milk. J Dairy Res 46:453–462

    CAS  Google Scholar 

  • Salih MA, Sandine WE (1980) Lactic streptococcal agglutinins: a review. J Food Prot 43:856

    Google Scholar 

  • Salih MA, Sandine WE (1984) Rapid test for detecting lactic streptococcal agglutinins in cheese milk. J Dairy Sci 67:7–23

    CAS  Google Scholar 

  • Sanchez L, Lujan L, Oria R, Castillo H, Perez D, Ena JM, Calvo M (1992) Synthesis of lactoferrin and transport of transferrin in the lactating mammary-gland of sheep. J Dairy Sci 75:1257–1262

    CAS  Google Scholar 

  • Santos MV, Ma Y, Barbano DM (2003) Effect of somatic cell count on proteolysis and lipolysis in pasteurized fluid milk during shelf-life storage. J Dairy Sci 86:2491–2503

    CAS  Google Scholar 

  • Santos JE, Cerri RL, Ballou MA, Higginbotham GE, Kirk JH (2004) Effect of timing of first clinical mastitis occurrence on lactational and reproductive performance of Holstein dairy cows. Anim Reprod Sci 80:31–45

    CAS  Google Scholar 

  • Schalm OW, Carroll EJ, Jain NC (1971) Bovine mastitis. Lea &Febiger, Philadelphia

    Google Scholar 

  • Schanbacher FL, Smith KL (1975) Formation and role of unusual whey proteins and enzymes: relation to mammary function. J Dairy Sci 58:1048–1062

    CAS  Google Scholar 

  • Scharfen EC, Mills DA, Maga EA (2007) Use of human lysozyme transgenic goat milk in cheese making: effects on lactic acid bacteria performance. J Dairy Sci 90:4084–4091

    CAS  Google Scholar 

  • Schmedt Auf Der Gunne H, Tenhagen BA, Kutzer P, Forderung D, Heuwieser W (2002) Do lactoferrin, lysozyme and the lactoperoxidase-thiocyanate-hydrogen peroxide-system cause negative microbiological results in mastitis secretions? Dtsch Tierarztl Wochenschr 109:300–305

    CAS  Google Scholar 

  • Schmitz S, Pfaffl MW, Meyer HH, Bruckmaier RM (2004) Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domest Anim Endocrinol 26:111–126

    CAS  Google Scholar 

  • Schott G (1967) Is yogurt manufacture affected by milk from mastitic cows? Dairy Sci Abstr 29:408

    Google Scholar 

  • Schukken YH, Hertl J, Bar D, Bennett GJ, Gonzalez RN, Rauch BJ, Santisteban C, Schulte HF, Tauer L, Welcome FL, Grohn YT (2009) Effects of repeated gram-positive and gram-negative clinical mastitis episodes on milk yield loss in Holstein dairy cows. J Dairy Sci 92:3091–3105

    CAS  Google Scholar 

  • Seifu E, Buys EM, Donkin EF (2003) Effect of the lactoperoxidase system on the activity of mesophilic cheese starter cultures in goat milk. Int Dairy J 13:953–959

    CAS  Google Scholar 

  • Seifu E, Buys EM, Donkin EF (2005) Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci Technol 16:137–154

    CAS  Google Scholar 

  • Sharma KK, Randolph HE (1974) Influence of mastitis on properties of milk. 8. Distribution of soluble and micellar casein. J Dairy Sci 57:19–23

    CAS  Google Scholar 

  • Sheffield LG (1997) Mastitis increases growth factor messenger ribonucleic acid in bovine mammary glands. J Dairy Sci 80:2020–2024

    CAS  Google Scholar 

  • Shipe WF, Senyk GF (1981) Effects of processing conditions on lipolysis in milk. J Dairy Sci 64:2146–2149

    CAS  Google Scholar 

  • Shuster DE, Kehrli ME, Baumrucker CR (1995) Relationship of inflammatory cytokines, growth-hormone, and insulin-like growth-factor-I to reduced performance during infectious-disease. Proc Soc Exp Biol Med 210:140–149

    CAS  Google Scholar 

  • Shuster DE, Lee EK, Kehrli ME Jr (1996) Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation. Am J Vet Res 57:1569–1575

    CAS  Google Scholar 

  • Shuster DE, Kehrli ME, Rainard P, Paape M (1997) Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect Immun 65:3286–3292

    CAS  Google Scholar 

  • Singh LN, Ganguli NC (1975) Alterations in the micellar, soluble and other casein fractions in the Serum abnormal bovine milk secretions. Ind J Dairy Sci 28:151–158

    CAS  Google Scholar 

  • Singh K, Dobson J, Phyn C, Davis S, Farr V, Molenaar A (2006) Streptococcus uberis increases apoptosis of bovine mammary epithelial cells (MEC) and decreases integrin and focal adhesion kinase (FAK) mRNA expression. J Anim Sci 84:148

    Google Scholar 

  • Somers JM, O’Brien B, Meaney WJ, Kelly AL (2003) Heterogeneity of proteolytic enzyme activities in milk samples of different somatic cell count. J Dairy Res 70:45–50

    CAS  Google Scholar 

  • Sordillo LM, Nickerson SC, Akers RM (1989) Pathology of Staphylococcus aureus mastitis during lactogenesis: relationships with bovine mammary structure and function. J Dairy Sci 72:228–240

    CAS  Google Scholar 

  • Suzuki J, Katoh N (1990) Cysteine protease in bovine milk capable of hydrolyzing casein as the substrate and elevation of the activity during the course of mastitis. Jpn J Vet Sci 52:947–954

    CAS  Google Scholar 

  • Swanson KM, Stelwagen K, Dobson J, Henderson HV, Davis SR, Farr VC, Singh K (2009) Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J Dairy Sci 92:117–129

    CAS  Google Scholar 

  • Tallamy PT, Randolph HE (1970) Influence of mastitis on properties of milk. V. Total and free concentrations of major minerals in skimmilk. J Dairy Sci 53:1386–1388

    CAS  Google Scholar 

  • Tao WJ, Mallard B (2007) Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet Immunol Immunopathol 120:201–211

    CAS  Google Scholar 

  • Urech E, Puhan Z, Schallibaum M (1999) Changes in milk protein fraction as affected by subclinical mastitis. J Dairy Sci 82:2402–2411

    CAS  Google Scholar 

  • Vangroenweghe F, Rainard P, Paape M, Duchateau L, Burvenich C (2004) Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. J Dairy Sci 87:4132–4144

    CAS  Google Scholar 

  • Vangroenweghe F, Duchateau L, Boutet P, Lekeux P, Rainard P, Paape MJ, Burvenich C (2005) Effect of carprofen treatment following experimentally induced Escherichia coli mastitis in primiparous cows. J Dairy Sci 88:2361–2376

    CAS  Google Scholar 

  • Vanselow J, Yang W, Herrmann J, Zerbe H, Schuberth HJ, Petzl W, Tomek W, Seyfert HM (2006) DNA-remethylation around a STAT5-binding enhancer in the α S1-casein promoter is associated with abrupt shutdown of α S1-casein synthesis during acute mastitis. J Mol Endocrinol 37:463–477

    CAS  Google Scholar 

  • Vautor E, Cockfield J, Le Marechal C, Le Loir Y, Chevalier M, Robinson DA, Thiery R, Lindsay J (2009) Difference in virulence between Staphylococcus aureus isolates causing gangrenous mastitis versus subclinical mastitis in a dairy sheep flock. Vet Res 40:56–67

    Google Scholar 

  • Verdi RJ, Barbano DM (1991) Effect of coagulants, somatic-cell enzymes, and extracellular bacterial enzymes on plasminogen activation. J Dairy Sci 74:772–782

    CAS  Google Scholar 

  • Verdi RJ, Barbano DM, Dellavalle ME, Senyk GF (1987) Variability in true protein, casein, nonprotein nitrogen, and proteolysis in high and low somatic cell milks. J Dairy Sci 70:230–242

    CAS  Google Scholar 

  • Vianna PCB, Mazal G, Santos MV, Bolini HMA, Gigante ML (2008) Microbial and sensory changes throughout the ripening of Prato cheese made from milk with different levels of somatic cells. J Dairy Sci 91:1743–1750

    CAS  Google Scholar 

  • Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009) Mastitis detection: current trends and future perspectives. Trends Biotechnol 27:486–493

    CAS  Google Scholar 

  • Vivar-Quintana AM, De la Mano EB, Revilla I (2006) Relationship between somatic cell counts and the properties of yoghurt made from ewes’ milk. Int Dairy J 16:262–267

    CAS  Google Scholar 

  • Waes G, Belleghem VM (1969) Influence de la mammite sur les propiétés technologiques et sur la qualité des produits laitiers. Lait 49:266–290

    Google Scholar 

  • Watanabe A, Yagi Y, Shiono H, Yokomizo Y (2000) Effect of intramammary infusion of tumour necrosis factor-alpha on milk protein composition and induction of acute-phase protein in the lactating cow. J Vet Med B Infect Dis Vet Public Health 47:653–662

    CAS  Google Scholar 

  • Watanabe A, Yagi Y, Shiono H, Yokomizo Y, Inumaru S (2008) Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-phase protein in cows during mammary involution. Can J Vet Res 72:291–296

    CAS  Google Scholar 

  • Weaver JC, Kroger M (1977) Protein, casein, and noncasein protein percentages in milk with high somatic cell counts. J Dairy Sci 60:878–881

    CAS  Google Scholar 

  • Wedholm A, Moller HS, Lindmark-Mansson H, Rasmussen MD, Andren A, Larsen LB (2008) Identification of peptides in milk as a result of proteolysis at different levels of somatic cell counts using LC MALDI MS/MS detection. J Dairy Res 75:76–83

    CAS  Google Scholar 

  • Wegner TN, Stull JW (1978) Relation between mastitis test score, mineral composition of milk, and blood electrolyte profiles in Holstein cows. J Dairy Sci 61:1755–1759

    CAS  Google Scholar 

  • Weinrauch Y, Zychlinsky A (1999) The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 53:155–187

    CAS  Google Scholar 

  • Wickstrom E, Persson-Waller K, Lindmark-Mansson H, Ostensson K, Sternesjo A (2009) Relationship between somatic cell count, polymorphonuclear leucocyte count and quality parameters in bovine bulk tank milk. J Dairy Res 76:195–201

    Google Scholar 

  • Wilson DJ, Gonzalez RN, Hertl J, Schulte HF, Bennett GJ, Schukken YH, Grohn YT (2004) Effect of clinical mastitis on the lactation curve: a mixed model estimation using daily milk weights. J Dairy Sci 87:2073–2084

    CAS  Google Scholar 

  • Winter P, Schilcher F, Fuchs K, Colditz IG (2003) Dynamics of experimentally induced Staphylococcus epidermidis mastitis in East Friesian milk ewes. J Dairy Res 70:157–164

    CAS  Google Scholar 

  • Ying CW, Wang HT, Hsu JT (2002) Relationship of somatic cell count, physical, chemical and enzymatic properties to the bacterial standard plate count in dairy goat milk. Livest Prod Sci 74:63–77

    Google Scholar 

  • Zavizion B, White JH, Bramley AJ (1997) Staphylococcus aureus stimulates urokinase-type plasminogen activator expression by bovine mammary cells. J Infect Dis 176:1637–1640

    CAS  Google Scholar 

  • Zeng SS, Escobar EN (1996) Factors affecting somatic cell count of goat milk throughout lactation: parity and milk production, in: The International Symposium on Somatic Cells and Milk of Small Ruminants, Bella, Italy, 25-9-1996, pp 157–160

  • Zhang S, Maddox CW (2000) Cytotoxic activity of coagulase-negative staphylococci in bovine mastitis. Infect Immun 68:1102–1108

    CAS  Google Scholar 

  • Zhao X, Lacasse P (2008) Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci 86:57–65

    CAS  Google Scholar 

Download references

Acknowledgments

Caroline Le Maréchal is the recipient of a Ph.D. grant from the Institut National de la Recherche Agronomique (INRA) and the Agence Nationale de Sécurité Sanitaire (ANSES), IMISa Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Le Loir.

About this article

Cite this article

Le Maréchal, C., Thiéry, R., Vautor, E. et al. Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Science & Technol. 91, 247–282 (2011). https://doi.org/10.1007/s13594-011-0009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-011-0009-6

Keywords

  • Mastitis
  • Milk
  • Ruminant
  • Dairy product
  • Bacterial pathogen

关键词

  • 反刍动物
  • 乳制品
  • 致病细菌