Aguayo J, Fourrier-Jeandel C, Husson C, Ioos R (2018) Assessment of passive traps combined with high-throughput sequencing to study airborne fungal communities. Appl Environ Microb 84(11):e02637–e02617. https://doi.org/10.1128/AEM.02637-17
CAS
Article
Google Scholar
Aizenberg V, Reponen T, Grinshpun SA, Willeke K (2000) Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. Am Ind Hyg Assoc J 61:855–864. https://doi.org/10.1080/15298660008984598
CAS
Article
Google Scholar
Alderman SC (1993) Aerobiology of Claviceps purpura in Kentucky bluegrass. Plant Dis 77:1045–1049. https://doi.org/10.1094/PD-77-1045
Article
Google Scholar
Aylor DE (1995) Vertical variation of airborne concentration of Venturia inaequalis ascospores in an apple orchard. Phytopathology 85:175–181. https://doi.org/10.1094/Phyto-85-175
Article
Google Scholar
Aylor DE (2017) Airborne dispersion of pollen and spores. The American Phytopathological Society Saint-Paul Minesota. https://doi.org/10.1094/9780890545430.
Aylor DE, Irwin ME (1999) Aerial dispersal of pests and pathogens: implications for integrated pest management. Agr Forest Meteorol 97:233–234. https://doi.org/10.1016/S0168-1923(99)00068-4
Article
Google Scholar
Aylor DE, Kiyomoto RK (1993) Relationship between airborne concentration of Venturia inaequalis ascospores and development of apple scab. Agr Forest Meteorol 63:133–147. https://doi.org/10.1016/0168-1923(93)90057-O
Article
Google Scholar
Aylor D, Taylor G (1983) Escape of Peronospora tabacina spores from a field of diseased tobacco plants. Phytopathology 73(4):525–529
Article
Google Scholar
Aylor DE, Fry WE, Mayton H, Andrade-Piedra JL (2001) Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy. Phytopathology 91:1189–1196. https://doi.org/10.1094/PHYTO.2001.91.12.1189
CAS
Article
PubMed
Google Scholar
Bashan Y, Levanony H, Or R (1991) Wind dispersal of Alternaria alernata a cause of leaf blight of cotton. J Phytopathol 133:225–238. https://doi.org/10.1111/j.1439-0434.1991.tb00157.x
Article
Google Scholar
Bérubé JA, Potvin A, Stewart D, Gagné PN, Ponchart JP, Phelan J, Varga A, James D, Tremblay ED, Duceppe MO, Kimoto T, Bilodeau GJ (2018a) Species, distribution and spore density of Heterobasidion in Canada. Forest Pest Management Forum abstract proceeding. 2018:42–43
Google Scholar
Bérubé JA, Gagne PN, Ponchart JP, Tremblay ED, Bilodeau GJ (2018b) Detection of Diplodia corticola spores in Ontario and Québec based on High throughput sequencing (HTS) methods. Canadian Journal of Plant Pathol 40(3):378–386. https://doi.org/10.1080/07060661.2018.1498394
CAS
Article
Google Scholar
Bilodeau GJ, Koike ST, Uribe P, Martin FN (2011) Development of an Assay for Rapid Detection and Quantification of Verticillium dahliae in Soil. Phytopathology 102(3):331–343. https://doi.org/10.1094/PHYTO-05-11-0130
CAS
Article
Google Scholar
Blanco C, de Santos BL, Romero F (2006) Relationship between concentrations of Botrytis Cinerea conidia in air, environmental conditions, and the incidence of grey mold in strawberry flowers and fruits. Eur J Plant Pathol 114:415–425. https://doi.org/10.1007/s10658-006-0007-3
Article
Google Scholar
Blandón-Díaz JU, Widmark AK, Hannukkala A, Andersson B, Högberg N, Yuen JE (2011) Phenotypic Variation Within a Clonal Lineage of Phytophthora infestans Infecting both Tomato and Potato in Nicaragua. Phytopathology 102(3):323–330. https://doi.org/10.1094/PHYTO-02-11-0033
Article
Google Scholar
Bock CH, Cotty PJ (2006) Methods to Sample air borne propagules of Aspergillus flavus. Eur J Plant Pathol 114:357–362. https://doi.org/10.1007/s10658-005-4514-4
Article
Google Scholar
Brischetto C, Bove F, Languasco L, Rossi V (2020) Can Spore Sampler Data Be Used to Predict Plasmopara viticola Infection in Vineyards? Frontiers in Plant Science 11(1187). https://doi.org/10.3389/fpls.2020.01187
Bronzato Badial A, Sherman D, Stone A, Gopakumar A, Wilson V, Schneider W, King J (2018) Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102:1648–1652. https://doi.org/10.1094/PDIS-04-17-0488-RE
Article
PubMed
Google Scholar
Cao X, Duan X, Zhou Y, Luo Y (2012) Dynamics in concentrations of Blumeria graminis f. sp tritici conidia and its relationship to local weather conditions and disease index in wheat. European Journal of Plant Pathology 132(4):525–535. https://doi.org/10.1007/s10658-011-9898-8
Article
Google Scholar
Cao X, Yao D, Xu X, Zhou Y, Ding K, Duan X, Fan J, Luo Y (2014) Development of Weather- and Airborne Inoculum-Based Models to Describe Disease Severity of Wheat Powdery Mildew. Plant Disease 99(3):395–400. https://doi.org/10.1094/PDIS-02-14-0201-RE
Article
Google Scholar
Carisse O, van der Heyden H (2017) Networked real time disease risk evaluation: A cost-effective approach to disease management. Phytopathology 107(12):145–147
Google Scholar
Carisse O, McCartney HA, Gagnon JA, Brodeur L (2005) Quantification of airborne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa. Plant Dis 89:726–733. https://doi.org/10.1094/PD-89-0726
CAS
Article
PubMed
Google Scholar
Carisse O, Savary S, Willocquet L (2007) Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed botrytis leaf blight epidemics. Phytopathology 98:38–44. https://doi.org/10.1094/PHYTO-98-1-0038
Article
Google Scholar
Carisse O, Savary S, Willocquet L (2008) Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed botrytis leaf blight epidemics. Phytopathology 98:38–44. https://doi.org/10.1094/PHYTO-98-1-0038
CAS
Article
PubMed
Google Scholar
Carisse O, Bacon R, Lefebvre A (2009a) Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration. Crop Prot 28(12):1036–1044. https://doi.org/10.1016/j.cropro.2009.06.002
Article
Google Scholar
Carisse O, Tremblay DM, Lévesque CA, Gindro K, Ward P, Houde A (2009b) Development of a TaqMan real-time PCR assay for quantification of airborne conidia of Botrytis squamosa and management of Botrytis leaf blight of onion. Phytopathology 99:1273–1280. https://doi.org/10.1094/PHYTO-99-11-1273
CAS
Article
PubMed
Google Scholar
Carisse O, Levasseur A, Van der Heyden H (2012) A new risk indicator for botrytis leaf blight of onion caused by Botrytis squamosa based on infection efficiency of airborne inoculum. Plant Pathol 61:1154–1164. https://doi.org/10.1111/j.1365-3059.2012.02594.x
Article
Google Scholar
Carisse O, Morissette-Thomas V, van der Heyden H (2013) Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Phytopathology 103:811–821. https://doi.org/10.1094/PHYTO-11-12-0300-R
CAS
Article
PubMed
Google Scholar
Carisse O, Tremblay DM, Lefebvre A (2014) Comparison of Botrytis cinerea airborne inoculum progress curves from raspberry, strawberry and grape plantings. Plant Pathol 63:983–993. https://doi.org/10.1111/ppa.12192
CAS
Article
Google Scholar
Carisse O, Tremblay DM, Hébert PO, Van der Heyden H, Delmotte D (2021) Evidence for differences in the temporal progress of Plasmopara viticola clades riparia and aestivalis airborne inoculum monitored in vineyards in eastern Canada using a specific multiplex qPCR assay. Plant Dis.:PDIS-06-20-1164. https://doi.org/10.1094/PDIS-06-20-1164-RE
Carvalho E, Sindt C, Verdier A, Galan C, O’Donoghue L, Parks S, Thibaudon M (2008) Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia 24:191–201. https://doi.org/10.1007/s10453-008-9098-y
Article
Google Scholar
Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A, Lachman O, Dror O, Nissan G, Manulis-Sasson S (2018) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68:229–238. https://doi.org/10.1111/ppa.12957
CAS
Article
Google Scholar
Chamecki M, Dufault NS, Isard SA (2011) Atmospheric dispersion of wheat rust spores: a new theoretical framework to interpret field data and estimate downwind dispersion. J Appl Meteorol Clim 51:672–685. https://doi.org/10.1175/JAMC-D-11-0172.1
Article
Google Scholar
Charest J, Dewdney M, Paulitz T, Philion V, Carisse O (2002) Spatial distribution of Venturia inaequalis airborne ascospores in orchards. Phytopathology 92(7):769–779. https://doi.org/10.1094/phyto.2002.92.7.769
CAS
Article
PubMed
Google Scholar
Chawda HT, Rajasab AH (1994) Aerobiology of Alternaria porri and its relation to purple blotch disease in onion. Indian J Mycol Plant Pathol 24:41–45. https://doi.org/10.1023/A:1011244104920
Article
Google Scholar
Chen W, Hambleton S, Seifert KA, Carisse O, Diarra MS, Peters RD, Lowe C, Chapados JT, Lévesque CA (2018) Assessing performance of spore samplers in monitoring aeromycobiota and fungal plant pathogen diversity in Canada. Appl Environ Microbiol 84:e02601–e02617. https://doi.org/10.1128/AEM.02601-17
CAS
Article
PubMed
PubMed Central
Google Scholar
Choudhury RA, Koike ST, Fox AD, Anchieta A, Subbarao KV, Klosterman SJ, McRoberts N (2016) Spatiotemporal patterns in the airborne dispersion of spinach downy mildew. Phytopathology 107:50–58. https://doi.org/10.1094/PHYTO-04-16-0162-R
Article
PubMed
Google Scholar
Cohen Y, Rotem J (1971) Dispersal and viability of sporangia of Pseudoperonospora cubensis. T Brit Mycol Soc 57(1):67–74. https://doi.org/10.1016/S0007-1536(71)80081-5
Article
Google Scholar
Dedeurwaerder G, Duvivier M, Mvuyenkure S, Renard ME, Van Hese V, Marchal G, Moreau JM, Legrève A (2011) Spore traps network: a new tool for predicting epidemics of wheat yellow rust. Communications in agricultural and applied biological sciences 76:667–670
CAS
PubMed
Google Scholar
Dhar N, Mamo BE, Subbarao K, Koike S, Fox A, Anchieta A, Klosterman SJ (2019) Measurements of aerial spore load by qPCR facilitates lettuce downy mildew risk advisement. Plant Disease. 104:82–93. https://doi.org/10.1094/PDIS-03-19-0441-RE
Article
PubMed
Google Scholar
Duvivier M, Dedeurwaerder G, Bataille C, De Proft M, Legrève A (2016) Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Puccinia triticina in Belgium. European Journal of Plant Pathology 145(2):405–420. https://doi.org/10.1007/s10658-015-0854-x
CAS
Article
Google Scholar
Evans N, Baierl A, Semenov MA, Gladders P, Fitt BDL (2008) Range and severity of a Plant Dis increased by global warming. J R Soc Interface 5(22):525–531. https://doi.org/10.1098/rsif.2007.1136
Article
PubMed
Google Scholar
Falacy JS, Grove GG, Mahaffee WF, Galloway H, Glawe DA, Larsen RC, Vandemark GJ (2007) Detection of Erysiphe necator in air samples using the polymerase chain reaction and species-specific primers. Phytopathology 97:1290–1297. https://doi.org/10.1094/PHYTO-97-10-1290
CAS
Article
PubMed
Google Scholar
Fall ML, Tremblay DM, Gobeil-Richard M, Couillard J, Rocheleau H, Van der Heyden H, Lévesque CA, Beaulieu C, Carisse O (2015) Infection efficiency of four Phytophthora infestans clonal lineages and DNA-based quantification of sporangia. PLOS ONE 10:e0136312. https://doi.org/10.1371/journal.pone.0136312
CAS
Article
PubMed
PubMed Central
Google Scholar
Fall ML, Van der Heyden H, Beaulieu C, Carisse O (2015a) Bremia lactucae infection efficiency in lettuce is modulated by temperature and leaf wetness duration under Quebec field conditions. Plant Dis 99:1010–1019. https://doi.org/10.1094/PDIS-05-14-0548-RE
CAS
Article
PubMed
Google Scholar
Fall ML, Van der Heyden H, Brodeur L, Leclerc Y, Moreau G, Carisse O (2015b) Spatiotemporal variation in airborne sporangia of Phytophthora infestans: characterization and initiative toward improving potato late blight risk estimation. Plant Pathol 64:178–190. https://doi.org/10.1111/ppa.12235
Article
Google Scholar
Fall ML, Van der Heyden H, Carisse O (2016) A Quantitative dynamic simulation of Bremia lactucae airborne conidia concentration above a lettuce canopy. PLOS ONE 11:e0144573. https://doi.org/10.1371/journal.pone.0144573
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á (2015) Potential sources of airborne Alternaria spp. spores in South-west Spain. Sci Total Environ 533:165–176. https://doi.org/10.1016/j.scitotenv.2015.06.031
CAS
Article
PubMed
Google Scholar
Fernando WGD, Paulitz TC, Seaman WL, Dutilleul P, Miller JD (1997) Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology 87:414–421. https://doi.org/10.1094/PHYTO.1997.87.4.414
CAS
Article
PubMed
Google Scholar
Fitt BDL, Creighton NF, Bainbridge A (1985) Role of wind and rain in dispersal of Botrytis fabae conidia. T Brit Mycol Soc 85(2):307–312. https://doi.org/10.1016/S0007-1536(85)80193-5
Article
Google Scholar
Fraaije BA, Cools HJ, Fountaine J, Lovell DJ, Motteram J, West JS, Lucas JA (2005) Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology 95:933–941. https://doi.org/10.1094/PHYTO-95-0933
CAS
Article
PubMed
Google Scholar
Friedrich S, Leinhos GME, Löpmeier FJ (2003) Development of ZWIPERO, a model forecasting sporulation and infection periods of onion downy mildew based on meteorological data. Eur J Plant Pathol 109:35–45. https://doi.org/10.1023/A:1022024612563
Article
Google Scholar
Gregory PH (1945) The dispersion of airborne spores. Trans Br Mycol Soc 28:26–72. https://doi.org/10.1016/S0007-1536(45)80041-4
Article
Google Scholar
Gregory PH (1973) The Microbiology of the Atmosphere, 2nd edn. Leonard Hill, London
Google Scholar
Gregory PH, Guthrie EJ, Bunce ME (1959) Experiments on splash dispersal of fungus spores. Microbiology 20 (2):328–354. https://doi.org/10.1099/00221287-20-2-328
González-Fernández E, Piña-Rey A, Fernández-González M, Aira MJ, Rodríguez-Rajo FJ (2020) Identification and evaluation of the main risk periods of Botrytis cinerea infection on grapevine based on phenology, weather conditions and airborne conidia. J Agric Sci 158(1-2):88–98. https://doi.org/10.1017/S0021859620000362
Haudenshield JS, Hartman GL (2011) Exogenous controls increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi. Plant Dis 95:343–352. https://doi.org/10.1094/PDIS-01-10-0023
CAS
Article
PubMed
Google Scholar
Hellin P, Duvivier M, Dedeurwaerder G, Bataille C, De Proft M, Legrève A (2018) Evaluation of the temporal distribution of Fusarium graminearum airborne inoculum above the wheat canopy and its relationship with Fusarium head blight and DON concentration. Eur J Plant Pathol 151:1049–1064. https://doi.org/10.1007/s10658-018-1442-7
Article
Google Scholar
Hellin P, Duvivier M, Clinckemaillie A, Bataille C, Legrève A, Heick TM, Jørgensen LN, Andersson B, Samils B, Rodemann B, Berg G, Kildea S (2020) Multiplex qPCR assay for simultaneous quantification of CYP51-S524T and SdhC-H152R substitutions in European populations of Zymoseptoria tritici. Plant Pathology 69(9):1666–1677. https://doi.org/10.1111/ppa.13252
CAS
Article
Google Scholar
Hemmati F, Pell JK, Mccartney HA, Deadman ML (2001) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol Res 105:485–489. https://doi.org/10.1017/S0953756201003537
Article
Google Scholar
Hildebrand PD, Sutton JC (1982) Weather variables in relation to an epidemic of onion downy mildew. Phytopathology 72:219–224. https://doi.org/10.1094/Phyto-72-219
Article
Google Scholar
Hirst JM (1953) Changes in atmospheric spore content: Diurnal periodicity and the effects of weather. T Brit Mycol Soc 36:375–IN378. https://doi.org/10.1016/S0007-1536(53)80034-3
Article
Google Scholar
Hu Y, Green GS, Milgate AW, Stone EA, Rathjen JP, Schwessinger B (2019) Pathogen detection and microbiome analysis of infected wheat using a portable DNA sequencer. Phytobiomes J 3:92–101. https://doi.org/10.1094/PBIOMES-01-19-0004-R
CAS
Article
Google Scholar
Ingold CT (1971) Fungal spores: their liberation and dispersal. Oxford University Press, London
Google Scholar
Ingold CT (1999) Active liberation of reproductive units in terrestrial fungi. Mycologist 13(3):113–116. https://doi.org/10.1016/S0269-915X(99)80040-8
Isard SA, Barnes CW, Hambleton S, Ariatti A, Russo JM, Tenuta A, Gay DA, Szabo LJ (2011) Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis 95:1346–1357. https://doi.org/10.1094/PDIS-01-11-0034
CAS
Article
PubMed
Google Scholar
Jackson SL, Bayliss KL (2011) Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathol 60(5):801–810. https://doi.org/10.1111/j.1365-3059.2011.02445.x
Article
Google Scholar
Jarvis WR (1962) The dispersal of spores of Botrytis cinerea fr. in a raspberry plantation. Trans Brit Mycol Society 45:549–559. https://doi.org/10.1016/S0007-1536(62)80015-1
Article
Google Scholar
Jones SJ, Gent DH, Pethybridge SJ, Hay FS (2011) Spatial characteristics of white mould epidemics and the development of sequential sampling plans in Australian bean fields. Plant Pathol 60:1169–1182. https://doi.org/10.1111/j.1365-3059.2011.02466.x
Article
Google Scholar
Kennedy R, Wakeham AJ (2008) Development of detection systems for the sporangia of Peronospora destructor. Eur J Plant Pathol 122:147–155. https://doi.org/10.1007/s10658-008-9346-6
CAS
Article
Google Scholar
Klosterman SJ, Anchieta A, McRoberts N, Koike ST, Subbarao KV, Voglmayr H, Choi YJ, Thines M, Martin FN (2014) Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii). Phytopathology 104:1349–1359. https://doi.org/10.1094/PHYTO-02-14-0054-R
CAS
Article
PubMed
PubMed Central
Google Scholar
Kunjeti SG, Anchieta A, Martin FN, Choi YJ, Thines M, Michelmore RW, Koike ST, Tsuchida C, Mahaffee W, Subbarao KV, Klosterman SJ (2016) Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology 106:1426–1437. https://doi.org/10.1094/PHYTO-03-16-0143-R
CAS
Article
PubMed
Google Scholar
Lacey J (1996) Spore dispersal-its role in ecology and disease: the British contribution to fungal aerobiology. Mycol Res 100:641–660. https://doi.org/10.1016/S0953-7562(96)80194-8
Article
Google Scholar
Lacey ME, West J (2006) The air spora: a manual for catching and identifying airborne biological particles. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30253-9
Leach CM (1982) Active sporangium discharge by Peronospora destructor. Phytopathology 72:881–885. https://doi.org/10.1094/Phyto-72-881
Article
Google Scholar
Leach CM, Hildebrand PD, Sutton JC (1982) Sporangium discharge by Peronospora destructor: influence of humidity, red-infrared radiation, and vibration. Phytopathology 72:1052–1056. https://doi.org/10.1094/Phyto-72-1052
Article
Google Scholar
Lees A, Roberts DM, Lynott J, Sullivan L, Brierley J (2019) Real-Time PCR and LAMP assays for the detection of spores of Alternaria solani and sporangia of Phytophthora infestans to inform disease risk forecasting. Plant Dis 103(12):3172–3180. https://doi.org/10.1094/PDIS-04-19-0765-RE
CAS
Article
PubMed
Google Scholar
Legg BJ (1983) Movement of plant pathogens in the crop canopy. Philos Trans R Soc Lond B Biol Sci 302:559–574. https://doi.org/10.1098/rstb.1983.0075
Article
Google Scholar
Limpert E, Godet F, Müller K (1999) Dispersion of cereal mildews across Europe. Agr Forest Meteorol 97:293–308. https://doi.org/10.1016/S0168-1923(99)00073-8
Article
Google Scholar
Madden LV, Hughes G (1999) Sampling for plant disease incidence. Phytopathology 89:1088–1103. https://doi.org/10.1094/PHYTO.1999.89.11.1088
CAS
Article
PubMed
Google Scholar
Mahaffee WF, Stoll R (2016) The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions. Phytopathology 106(5):420–431. https://doi.org/10.1094/PHYTO-02-16-0060-RVW
Article
PubMed
Google Scholar
McCartney HA, Fitt BDL, Schmechel D (1997) Sampling bioaerosols in plant pathology. J Aerosol Sci 28(3):349–364. https://doi.org/10.1016/S0021-8502(96)00438-7
CAS
Article
Google Scholar
McDevitt JJ, Lees PSJ, Merz WG, Schwab KJ (2007) Inhibition of quantitative PCR analysis of fungal conidia associated with indoor air particulate matter. Aerobiologia 23(1):35–45. https://doi.org/10.1007/s10453-006-9047-6
Article
Google Scholar
Micheli PA (1729) Nova Plantarum Genera. 234 pp.
Morais D, Sache I, Suffert F, Laval V (2016) Is the onset of septoria tritici blotch epidemics related to the local pool of ascospores? Plant Pathology 65(2):250–260. https://doi.org/10.1111/ppa.12408
Article
Google Scholar
Mundt CC (2009) Importance of autoinfection to the epidemiology of polycyclic foliar disease. Phytopathology 99:1116–1120. https://doi.org/10.1094/PHYTO-99-10-1116
Article
PubMed
Google Scholar
Mundt C, Browning J (1985) Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607–610. https://doi.org/10.1094/Phyto-75-607
Article
Google Scholar
Narayan P, Gonzalez F, Zeller L, Walker R (2010) Final Report - Flying Spore Traps Project CRC30032 (with Ground Vehicle Test Results) ACT. CRC for National Plant Biosecurity, Australia
Google Scholar
Neufeld KN, Isard SA, Ojiambo PS (2013) Relationship between disease severity and escape of Pseudoperonospora cubensis sporangia from a cucumber canopy during downy mildew epidemics. Plant Pathology 62(6):1366–1377. https://doi.org/10.1111/ppa.12040
Article
Google Scholar
Nicolaisen M, West JS, Sapkota R, Canning GGM, Schoen C, Justesen AF (2017) Fungal communities including plant pathogens in near surface air are similar across northwestern Europe. Frontiers in Microbiology 8(1729). https://doi.org/10.3389/fmicb.2017.01729
Nieguitsila A, Arné P, Durand B, Deville M, Benoît-Valiergue H, Chermette R, Cottenot-Latouche S, Guillot J (2011) Relative efficiencies of two air sampling methods and three culture conditions for the assessment of airborne culturable fungi in a poultry farmhouse in France. Envion Res 111:248–253. https://doi.org/10.1016/j.envres.2010.12.005
CAS
Article
Google Scholar
Ovaskainen O, Abrego N, Somervuo P, Palorinne I, Hardwick B, Pitkänen J-M, Andrew NR, Niklaus PA, Schmidt NM, Seibold S, Vogt J, Zakharov EV, Hebert PDN, Roslin T, Ivanova NV (2020) Monitoring Fungal Communities With the Global Spore Sampling Project. Frontiers in Ecology and Evolution 7(511). https://doi.org/10.3389/fevo.2019.00511
Paul PA, El-Allaf SM, Lipps PE, Madden LV (2004) Rain splash dispersion of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94:1342–1349. https://doi.org/10.1094/PHYTO.2004.94.12.1342
CAS
Article
PubMed
Google Scholar
Paulitz TC, Dutilleul P, Yamasaki SH, Fernando WGD, Seaman WL (1999) A generalized two-dimensional Gaussian model of disease foci of head blight of wheat caused by Gibberella zeae. Phytopathology 89:74–83. https://doi.org/10.1094/PHYTO.1999.89.1.74
CAS
Article
PubMed
Google Scholar
Peters RD, Al-Mughrabi KI, Kalischuk ML, Dobinson KF, Conn KL, Alkher H, Islam MR, Daayf F, Lynn J, Bizimungu B, De Koeyer D, Lévesque CA, Kawchuk LM (2014) Characterization of Phytophthora infestans population diversity in Canada reveals increased migration and genotype recombination. Canadian Journal of Plant Pathol 36(1):73–82. https://doi.org/10.1080/07060661.2014.892900
Article
Google Scholar
Rahman A, Standish J, D'Arcangelo KN, Quesada-Ocampo LM (2020) Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology. 111:312–320. https://doi.org/10.1094/PHYTO-06-20-0231-R
Article
Google Scholar
Redondo MA, Berlin A, Boberg J, Oliva J (2020) Vegetation type determines spore deposition within a forest–agricultural mosaic landscape. FEMS Microbiol Ecol 96(Issue 6):fiaa082. https://doi.org/10.1093/femsec/fiaa082
CAS
Article
PubMed
PubMed Central
Google Scholar
Reich J, Chatterton S, Johnson D (2016) Temporal dynamics of Botrytis cinerea and Sclerotinia sclerotiorum in seed Alfalfa fields of southern Alberta, Canada. Plant Dis 101:331–343. https://doi.org/10.1094/PDIS-04-16-0492-RE
Article
PubMed
Google Scholar
Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE, Mehl A, Ravigne V, Carlier J, de Lapeyre de Bellaire L (2014) Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of anisotropic dispersal kernels from an extensive field experiment. PLoS ONE 9(8):e103225. https://doi.org/10.1371/journal.pone.0103225
CAS
Article
PubMed
PubMed Central
Google Scholar
Robinson RA (1976) Plant pathosystems. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-66359-8.
Rogers SL, Atkins SD, West JS (2009) Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathol. 58:324–331. https://doi.org/10.1111/j.1365-3059.2008.01945.x
CAS
Article
Google Scholar
Schwarzbach E (1979) A High Throughput Jet Trap for Collecting Mildew Spores on Living Leaves. J Phytopathol 94(2):165–171. https://doi.org/10.1111/j.1439-0434.1979.tb01546.x
Article
Google Scholar
Severns PM, Sackett KE, Farber DH, Mundt CC (2018) Consequences of long-distance dispersal for epidemic spread: patterns, scaling, and mitigation. Plant Dis 103(2):177–191. https://doi.org/10.1094/PDIS-03-18-0505-FE
Article
PubMed
Google Scholar
Si Ammour M, Bilodeau GJ, Tremblay DM, van der Heyden H, Yaseen T, Varvaro L, Carisse O (2017) Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Dis 101:1269–1277. https://doi.org/10.1094/PDIS-12-16-1780-RE
Article
PubMed
Google Scholar
Stakman EC, Christensen CM (1946) Aerobiology in relation to plant disease. Bot Rev 12(4):205–253. http://www.jstor.org/stable/4353339
Article
Google Scholar
Strandberg JO (1977) Spore production and dispersal of Alternaria dauci. Phytopathology 67:1262–1266. https://doi.org/10.1094/Phyto-67-1262
Article
Google Scholar
Suarez MB, Walsh K, Boonham N, O’Neill T, Pearson S, Barker I (2005) Development of real-time PCR (TaqMan®) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol Bioch 43:890–899. https://doi.org/10.1016/j.plaphy.2005.07.003
CAS
Article
Google Scholar
Summers CF, Adair NL, Gent DH, McGrath MT, Smart CD (2015) Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis. Canadian Journal of Plant Pathol 37:315–330. https://doi.org/10.1080/07060661.2015.1053989
Article
Google Scholar
Thiessen LD, Keune JA, Neill TM, Turechek WW, Grove GG, Mahaffee WF (2016) Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. Plant Pathol 65:238–249. https://doi.org/10.1111/ppa.12421
CAS
Article
Google Scholar
Tremblay ED, Duceppe M-O, Berube JA, Kimoto T, Lemieux C, Bilodeau GJ (2018) Screening for exotic forest pathogens to increase survey capacity using metagenomics. Phytopathology 108(12):1509–1521. https://doi.org/10.1094/PHYTO-02-18-0028-R
Article
PubMed
Google Scholar
Turechek WW, Mahaffee WF (2004) Spatial pattern analysis of hop powdery mildew in the Pacific Northwest: Implications for sampling. Phytopathology 94:1116–1128. https://doi.org/10.1094/PHYTO.2004.94.10.1116
Article
PubMed
Google Scholar
Van der Heyden H, Carisse O, Brodeur L (2012) Comparison of monitoring based indicators for initiating fungicide spray programs to control Botrytis leaf blight of onion. Crop Prot 33(0):21-28. https://doi.org/10.1016/j.cropro.2011.11.008.
Van der Heyden H, Dutilleul P, Charron J-B, Bilodeau GJ, Carisse O (2020) Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data. Agronomy 10(5):738. https://doi.org/10.3390/agronomy10050738
Van der Heyden H, Dutilleul P, Brodeur L, Carisse O (2014) Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling. Phytopathology 104:604–613. https://doi.org/10.1094/PHYTO-03-13-0085-R
Article
PubMed
Google Scholar
von Qualen R, Yang X-B (2006) Spore traps help researchers watch for soybean rust. http://lib.dr.iastate.edu/cropnews/1308
Wallace EC, D’Arcangelo KN, Quesada-Ocampo LM (2020) Population Analyses Reveal Two Host-Adapted Clades of Pseudoperonospora cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits. Phytopathology 110(9):1578–1587. https://doi.org/10.1094/PHYTO-01-20-0009-R
CAS
Article
PubMed
Google Scholar
West JS, Kimber RBE (2015) Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol 166:4–17. https://doi.org/10.1111/aab.12191
Article
PubMed
PubMed Central
Google Scholar
West JS, Atkins SD, Emberlin J, Fitt BDL (2008) PCR to predict risk of airborne disease. Trends Microbiol 16(8):380–387. https://doi.org/10.1016/j.tim.2008.05.004
CAS
Article
PubMed
Google Scholar
West JS, Canning K, King K, Fraaije B, Wili S (2018) Final Report - Arable crop disease alert system, PR594. AHDB Cereals & Oilseeds.
Widmark AK, Andersson B, Cassel-Lundhagen A, Sandström M, Yuen JE (2007) Phytophthora infestans in a single field in southwest Sweden early in spring: symptoms, spatial distribution and genotypic variation. Plant Pathology 56(4):573–579. https://doi.org/10.1111/j.1365-3059.2007.01618.x
CAS
Article
Google Scholar
Williams RH, Ward E, McCartney HA (2001) Methods for integrated air sampling and DNA analysis for detection of airborne fungal pores. Appl Environ Microb 67(6):2453–2459. https://doi.org/10.1128/AEM.67.6.2453-2459.2001
CAS
Article
Google Scholar
Zawolek M, Zadoks J (1992) Studies in focus development: An optimum for the dual dispersal of plant pathogens. Phytopathology 82:1288–1297. https://doi.org/10.1094/Phyto-82-1288
Article
Google Scholar
Zhan J, Kema GHJ, Waalwijk C, McDonald BA (2002) Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genetics and Biology 36(2):128–136. https://doi.org/10.1016/S1087-1845(02)00013-0
CAS
Article
PubMed
Google Scholar