Advertisement

Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis

  • Michael L. Grieneisen
  • Brenna J. Aegerter
  • C. Scott Stoddard
  • Minghua Zhang
Review Article

Abstract

Grafted fresh market tomatoes are widely used in commercial production throughout Europe and Asia, and interest among commercial producers in the Americas has increased in recent years. Many field trials have found dramatic net economic return increases relative to non-grafted scion cultivars. However, optimal yields require growing conditions that satisfy the agronomic needs of both rootstock and scion cultivars. Most commercial rootstocks are resistant to multiple soilborne pathogens, allowing grafted plants to maintain high yields in pathogen-infested fields without the use of soil pesticides, including fumigants. Here we comprehensively and quantitatively review, for the first time, all available published trial data on fruit quality and yield of grafted tomatoes. Collectively, 159 publications included 202 different rootstocks, 126 geographic locations, and 1023 experimental treatments. Yield performance varies with the specific rootstock/scion combinations and with the conditions of a given production system. Among 949 heterograft treatments (rootstock/scion of different cultivars), grafted plant yields were not significantly higher in 65% of the cases, yet they averaged a 37% yield increase for all data. In addition, grafted/non-grafted yield ratios in 105 experimental treatments with rootstock ‘Maxifort’ varied dramatically by scion. However, European trials used completely different scions than US trials, so the roles of scion and geographical differences remain unclear. Concerns that grafting might contribute to inferior fruit quality (pH, titratable acidity, total soluble solids, lycopene, vitamin C, firmness, “taste”) seem unfounded in general, though isolated cases show dramatic differences. Grafted tomatoes show promise to reduce the usage of various soilborne pathogen treatments, with 33% of commercial tomato rootstocks either resistant or highly resistant to seven or more common soilborne pathogens. Our approach integrated trial data from around the world, though limitations in available data complicated our analysis of relationships between some experimental variables and fruit yields and quality.

Keywords

Grafted tomato Literature review Rootstock Scion Yield Fruit quality Pathogen resistance Soil fumigant use reduction 

Notes

Funding

This study was funded in part by the Specialty Crop Block Grant Program of the U.S. Department of Agriculture (USDA) through Grant 14-SCBGP-CA-0006. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA. The California Department of Pesticide Regulation also provided partial funding for this project through Pest Management Research Grant 16–PML–R004, but does not necessarily agree with any opinion expressed, nor endorse any commercial product or trade name mentioned.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albacete A, Andujar C, Dodd I, Giuffrida F, Hichri I, Lutts S, Thompson A, Asins M (2015a) Rootstock-mediated variation in tomato vegetative growth under drought, salinity and soil impedance stress. Acta Hortic 1086:141–146.  https://doi.org/10.17660/ActaHortic.2015.1086.17 CrossRefGoogle Scholar
  2. Albacete A, Martinez-Andujar C, Martinez-Perez A, Thompson AJ, Dodd IC, Perez-Alfocea F (2015b) Unravelling rootstock X scion interactions to improve food security. J Exp Biol 66:2211–2226.  https://doi.org/10.1093/jxb/erv027 CrossRefGoogle Scholar
  3. Barrett CE, Zhao X, Hodges AW (2012a) Cost benefit analysis of using grafted transplants for root-knot nematode management in organic heirloom tomato production. HortTechnology 22:252–257Google Scholar
  4. Cantero-Navarro E, Romero-Aranda R, Fernandez-Munoz R, Martinez-Andujar C, Perez-Alfocea F, Albacete A (2016a) Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Sci 251(Sp Iss):90–100.  https://doi.org/10.1016/j.plantsci.2016.03.001 CrossRefPubMedGoogle Scholar
  5. Cortez-Madrigal H (2012) Grafts of crops on wild relatives as base of an integrated pest management: The tomato Solanum lycopersicum as example. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control: current and future tactics. InTech, Rijeka, pp 127–146.  https://doi.org/10.5772/30181 CrossRefGoogle Scholar
  6. Deacon S, Alix A, Knowles S, Wheeler J, Tescari E, Alvarez L, Nicolette J, Rockel M, Burston P, Quadri G (2016) Integrating ecosystem services into crop protection and pest management: Case study with the soil fumigant 1,3-dichloropropene and its use in tomato production in Italy. Integr Environ Assess Manag 12:801–810.  https://doi.org/10.1002/ieam.1761 CrossRefPubMedGoogle Scholar
  7. Desaeger J, Dickson DW, Lacascio SJ (2017) Methyl bromide alternatives for control of root-knot nematode (Meloidogyne spp.) in tomato production in Florida. J Nematol 49:140–149PubMedCrossRefPubMedCentralGoogle Scholar
  8. Djidonou D, Gao Z, Zhao X (2013a) Economic analysis of grafted tomato production in sandy soils in northern Florida. HortTechnology 23:613–621Google Scholar
  9. Fennimore SA, Goodhue RE (2016) Soil disinfestation with steam: a review of economics, engineering, and soil pest control in California strawberry. Int J Fruit Sci 16(S1):71–83.  https://doi.org/10.1080/15538362.2016.1195312 CrossRefGoogle Scholar
  10. Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, Morales B, Campos JF, Garcia-Abellán JO, Egea MI, Fernández-Garcia N, Fomojaro F, Bolarín MC (2010a) The effectiveness of grafting to improve tomato fruit quality. Sci Hortic 125:211–217.  https://doi.org/10.1016/j.scienta.2010.03.026 CrossRefGoogle Scholar
  11. Gao SD, Sosnoskie LM, Cabrera JA, Qin RJ, Hanson BD, Gerik JS, Wang D, Browne GT, Thomas JE (2016) Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation. Pest Manage Sci 72:306–314.  https://doi.org/10.1002/ps.3993 CrossRefGoogle Scholar
  12. Gilardi G, Gullino ML, Garibaldi A (2013) Critical aspects of grafting as a possible strategy to manage soil-borne pathogens. Sci Hortic 149:19–21.  https://doi.org/10.1016/j.scienta.2012.07.014 CrossRefGoogle Scholar
  13. Grieneisen ML, Zhan Y, Chen JH, Zhang MH (2017) Alternative management practices to reduce soil fumigant use in key California crops: a meta-analysis approach. Presentation: Department of Pesticide Regulation Integrated Pest Management Symposium, 21 Mar 2017, Sacramento, CA. http://www.cdpr.ca.gov/docs/pestmgt/ipm_symposium/mike_grieneisen.pdf. Accessed 26.06.2017.
  14. Johnson SJ, Miles CA (2011) Effect of healing chamber design on the survival of grafted eggplant, tomato, and watermelon. HortTechnology 21:752–758Google Scholar
  15. Keatinge JDH, Lin LJ, Ebert AW, Chen WY, Hughes JA, Luther GC, Wang JF, Ravishankar M (2014) Overcoming biotic and abiotic stress in the Solanaceae through grafting: current status and future perspectives. Biol Agric Hortic 30:272–287.  https://doi.org/10.1080/01448765.2014.964317 CrossRefGoogle Scholar
  16. Kokalis-Burelle N, Butler DM, Hong JC, Bausher MG, McCollum G, Rosskopf EN (2016) Grafting and Paladin Pic-21 for nematode and weed management in vegetable production. J Nematol 48:231–240PubMedCrossRefPubMedCentralGoogle Scholar
  17. Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN (2008) Vegetable grafting: history, use, and current technology status in North America. HortScience 43:1664–1669Google Scholar
  18. Kyriacou MC, Rouphael Y, Colla G, Zrenner R, Schwarz D (2017) Vegetable grafting: the implications of growing agronomic imperative for vegetable fruit quality and nutritive value. Front Plant Sci 8:741.  https://doi.org/10.3389/fpls.2017.00741 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos Echevarria P, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127:93–105.  https://doi.org/10.1016/j.scienta.2010.08.003 CrossRefGoogle Scholar
  20. Leonardi C, Giuffrida F (2006) Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Eur J Hortic Sci 71:97–101Google Scholar
  21. Lopes CA, Mendonça JL (2016) Reação de acessos de jurubeba à murcha bacteriana para uso como porta-enxerto em tomateiro—Reaction of accessions of two species of “jurubeba” as rootstocks to protect tomato plants against bacterial wilt. Hortic Bras 34:356–360.  https://doi.org/10.1590/S0102-05362016003008 CrossRefGoogle Scholar
  22. López-Pérez JA, Le Strange M, Kaloshian I, Ploeg AT (2006) Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Prot 25:382–388.  https://doi.org/10.1016/j.cropro.2005.07.001 CrossRefGoogle Scholar
  23. Louws FJ, Rivard CL, Kubota C (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic 127:127–146.  https://doi.org/10.1016/j.scienta.2010.09.023 CrossRefGoogle Scholar
  24. Masterson SA, Kennelly MM, Janke RR, Rivard CL (2016) Scion shoot removal and rootstock cultivar affect vigor and early yield of grafted tomatoes grown in high tunnels in the central United States. HortTechnology 26:399–408Google Scholar
  25. McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML (2012a) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47:621–625Google Scholar
  26. Nilsen ET, Freeman J, Grene R, Tokuhisa J (2014a) A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One 9:e115380.  https://doi.org/10.1371/journal.pone.0115380 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oda M, Maruyama M, Mori G (2005) Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. J Jpn Soc Hortic Sci 74:458–463.  https://doi.org/10.2503/jjshs.74.458 CrossRefGoogle Scholar
  28. Oztekin GB, Giuffrida F, Tuzel Y, Leonardi C (2009a) Is the vigour of grafted tomato plants related to root characteristics? J Food Agric Environ 7:364–368Google Scholar
  29. Oztekin GB, Tuzel Y, Tuzel IH (2013a) Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hortic 149:55–60.  https://doi.org/10.1016/j.scienta.2012.02.033 CrossRefGoogle Scholar
  30. Palada MC, Wu DL (2007a) Increasing off-season tomato production using grafting technology for peri-urban agriculture in Southeast Asia. Acta Hortic 742:125–131.  https://doi.org/10.17660/ActaHortic.2007.742.17 CrossRefGoogle Scholar
  31. Peres LEP, Carvalho RF, Zsogon A, Bermudez-Zambrano OD, Robles WGR, Tavares S (2005) Grafting of tomato mutants onto potato rootstocks: an approach to study leaf-derived signaling on tuberization. Plant Sci 169:680–688.  https://doi.org/10.1016/j.plantsci.2005.05.017 CrossRefGoogle Scholar
  32. Porter IJ (2017) What is driving industry tipping points from open field to hydroponics. Acta Hortic 1176:129–136.  https://doi.org/10.17660/ActaHortic.2017.1176.17 CrossRefGoogle Scholar
  33. Qiao K, Jiang L, Wang H, Ji X, Wang K (2010) Evaluation of 1,3-dichloropropene as a methyl bromide alternative in tomato crops in China. J Agric Food Chem 58:11395–11399.  https://doi.org/10.1021/jf102830y CrossRefPubMedGoogle Scholar
  34. Rao ES, Kadirvel P, Symonds RC, Ebert AW (2013) Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica 190:215–228.  https://doi.org/10.1007/s10681-012-0801-2 CrossRefGoogle Scholar
  35. Raymond G (2013) Grafting market developments. Rijk Zwaan USA, Salinas, CA, 26 pp http://www.vegetablegrafting.org/wp/wp-content/uploads/2013/11/session-4-raymond-scri-vege-grftg-symp-nov13.pdf. Accessed 26.06.2017
  36. Reddy PP (2016) Grafted vegetables for management of solborne pathogens. In: Reddy PP (ed) Sustainable crop protection under protected cultivation. Springer, Berlin, pp 83–97.  https://doi.org/10.1007/978-981-287-952-3_7 CrossRefGoogle Scholar
  37. Rivard CL, Louws FJ (2008a) Grafting to manage soilborne diseases in heirloom tomato production. HortScience 43:2104–2111Google Scholar
  38. Rivard CL, Sydorovych O, O’Connell S, Peet MM, Louws FJ (2010a) An economic analysis of two grafted tomato transplant production systems in the United States. HortTechnology 20:794–803Google Scholar
  39. Rivard CL, O’Connell S, Peet MM, Welker RM, Louws FJ (2012a) Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Dis 96:973–978.  https://doi.org/10.1094/PDIS-12-10-0877 CrossRefGoogle Scholar
  40. Rouphael Y, Schwarz D, Krumbein A, Colla G (2010) Impact of grafting on product quality of fruit vegetables. Sci Hortic 127:172–179.  https://doi.org/10.1016/j.scienta.2010.09.001 CrossRefGoogle Scholar
  41. Rysin O, Louws FJ (2015) Decision tool for growers to evaluate economic impact of grafting technology adoption: an application to open-field conventional tomato production. HortTechnology 25:132–138Google Scholar
  42. Stadler C (2013) Final report of the research project „Áhrif ljósstyrks, ágræðslu og umhverfis á vöxt, uppskeru og gæði gróðurhúsatómata“ [Reykir, Iceland]. Rit LbhÍ nr. 45, v, 58 pp. http://www.lbhi.is/sites/default/files/gogn/vidhengi/finalreporttomato.pdf. Accessed 27 Jun 2017
  43. Tian S, Ashraf MA, Kondo N, Shiigi T, Momin MA (2013) Optimization of machine vision for tomato grafting robot. Sensor Lett 11:1190–1194.  https://doi.org/10.1166/sl.2013.2899 CrossRefGoogle Scholar
  44. Venema JH, Dijk BE, Bax JM, van Hasselt PR, Elzenga JTM (2008a) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63:359–367.  https://doi.org/10.1016/j.envexpbot.2007.12.015 CrossRefGoogle Scholar
  45. Yasinok AE, Sahin FI, Eyidogan F, Kuru M, Haberal M (2009a) Grafting tomato plant on tobacco plant and its effect on tomato plant yield and nicotine content. J Sci Food Agric 89:1122–1128.  https://doi.org/10.1002/jsfa.3555 CrossRefGoogle Scholar

References for articles included in the meta-analysis

  1. Abdelmageed AHA, Gruda N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 74:16–20Google Scholar
  2. Alvarez-Hernandez JC (2012) Comportamiento agronomico e incidencia de enfermedades en plantas de tomate (Solanum lycopersicum L.) injertadas = Agronomic performance and incidence of diseases in tomato grafted plants (Solanum lycopersicum L.). Acta Agron. Univ Nac Colombia 61:117–125Google Scholar
  3. Arwiyanto T, Nurcahyanti SD, Indradewa D, Widada J (2015) Grafting local commercial tomato cultivars with H-7996 and Eg-203 to suppress bacterial wilt (Ralstonia solanacearum) in Indonesia. Acta Hortic 1069:173–178CrossRefGoogle Scholar
  4. Baez-Valdez EP, Carrillo-Fasio JA, Baez-Sanudo MA, Garcia-Estrada RS, Valdez-Torres JB, Contreras-Martinez R (2010) Resistant rootstocks utilization for fusarium control (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen race 3) in tomato (Lycopersicon esculentum Mill) under shade conditions. Rev Mex Fitopatol 28:111–123Google Scholar
  5. Bai X (2009) The effect of graft cultivation on yield and economic benefit of tomato. Guizhou Agric Sci 37:131–132Google Scholar
  6. Barrett CE, Zhao X, McSorley R (2012b) Grafting for root-knot nematode control and yield improvement in organic heirloom tomato production. HortScience 47:614–620Google Scholar
  7. Barrett CE, Zhao X, Sims CA, Brecht JK, Dreyer EQ, Gao ZF (2012c) Fruit composition and sensory attributes of organic heirloom tomatoes as affected by grafting. HortTechnology 22:804–809Google Scholar
  8. Bhatt RM, Upreti KK, Divya MH, Bhat S, Pavithra CB, Sadashiva AT (2015) Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci Hortic 182:8–17CrossRefGoogle Scholar
  9. Bogescu M, Doltu M, Sora D, Iordache B (2012) Sustainable alternatives to methyl bromide in Romanian horticulture. Bull Univ Agric Sci Vet Med Cluj Napoca Horticulture 69:89–95Google Scholar
  10. Bogoescu M, Doltu M, Iordache B, Vintila M, Sora D, Mohora A (2011) The grafting tomatoes crop—an alternative for vegetable growers. Bull Univ Agric Sci Vet Med Cluj Napoca Horticulture 68:215–221Google Scholar
  11. Bogoescu M, Gullino ML, Minuto A, Amadio A (2005) Alternatives to methyl bromide in Romanian protected crops. Acta Hortic 698:315–320CrossRefGoogle Scholar
  12. Bonomo G, Maltese V, Bellafiore M (2008) A Marsala si prova pomodoro datterino = Datterino tomato is also tested in Marsala. Colture Protette 37(8):54–58Google Scholar
  13. Branco RBF, Goto R, Carneiro Junior AG, Guimaraes VF, Rodrigues JD, Trivelin PCO (2007a) Transporte do 15N e produtividade do tomateiro enxertado irrigado com agua carbonatada = Transport of 15N and yield of the grafted tomato irrigated with carbonated water. Hortic Bras 25:77–81CrossRefGoogle Scholar
  14. Branco RBF, Goto R, Carneiro Junior AG, Guimaraes VF, Rodrigues JD, Trivelin PCO, Silveira LVDA (2007b) Enxertia e água de irrigação carbonatada no transporte de 15N e na produção do tomateiro = Grafting and carbonated irrigation water in transport of 15N and in the tomato production. Reva Bras Engenhar Agricola e Ambient 11:374–379CrossRefGoogle Scholar
  15. Burleigh JR, Black LL, Mateo LG, Cacho D, Aganon CP, Boncato T, Arida IA, Ulrichs C, Ledesma DR (2005) Performance of grafted tomato in Central Luzon, Philippines: a case study on the introduction of a new technology among resource-limited farmers. Crop Manage 2005(Jul):1–9Google Scholar
  16. Cantero-Navarro E, Romero-Aranda R, Fernandez-Munoz R, Martinez-Andujar C, Perez-Alfocea F, Albacete A (2016b) Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Sci 251:90–100PubMedCrossRefGoogle Scholar
  17. Cantu RR, Junglaus RW, Goto R (2009) Produtividade e crescimento do tomateiro ‘Paron’ enxertado em diferentes porta-enxertos = Production and growth of tomato Paron cultivar grafted in different rootstocks. Agropec Catarin 22:69–73Google Scholar
  18. Cardoso SC, Soares ACF, Brito ADS, Carvalho LAD, Ledo CADS (2006a) Viabilidade de uso do hibrido Hawaii 7996 como porta-enxerto de cultivares comerciais de tomate = Potential of Hawaii 7996 hybrid as rootstock for tomato cultivars. Bragantia 65:89–96CrossRefGoogle Scholar
  19. Cardoso SC, Soares ACF, Brito ADS, Carvalho LAD, Peixoto CC, Pereira MEC, Goes E (2006b) Qualidade de frutos de tomateiro com e sem enxertia = Quality characteristics of tomato fruits from grafted plants. Bragantia 65:269–274CrossRefGoogle Scholar
  20. Chalanska A, Slusarski C, Ulinski Z, Meszka B, Sobiczewski P, Malusa E, Ciesielska J (2014) The effectiveness of grafting and soil fumigation on the performance of greenhouse tomatoes. Acta Hortic 1044:263–268CrossRefGoogle Scholar
  21. Chaudhari S (2015) Critical period for weed control in grafted tomato (Solanum lycopersicum) and herbicide tolerance of grafted tomato and eggplant (Solanum melongena). Dissertation, North Carolina State UniversityGoogle Scholar
  22. Chaudhari S, Jennings K, Monks D, Jordan D, Gunter C, Louws F (2015) Response of grafted tomato (Solanum lycopersicum) to herbicides. Weed Technol 29:800–809CrossRefGoogle Scholar
  23. Chen Z, Wang P, Zhou Y, Ji Y, Liang P, Wan Z, Hao J (2012) Effects of different resistant rootstocks on yield and quality of grafted tomato and control effects of Meloidogyne incognita. China Veg 2012(20):83–87Google Scholar
  24. Deng L, Zhao L, Liu L (2007) Effects of different rootstocks with resistance to root-knot nematode on growth, quality and yield of tomato in greenhouse. China Veg 2007:13–16Google Scholar
  25. Djidonou D (2012) Improving fruit yield and nutrient management in tomato production by using grafting. Dissertation, University of FloridaGoogle Scholar
  26. Djidonou D, Gao ZF, Xhao X (2013b) Economic analysis of grafted tomato production in sandy soils in northern Florida. HortTechnology 23:613–621Google Scholar
  27. Dong D, Cao Z, Wang X, Hu J, Gullino ML (2007) Effect of nematode resistant rootstocks on growth characteristics and yields of tomato. Acta Hortic Sin 34:1305–1308Google Scholar
  28. Dong LD, Shi L, Guo JH (2010) Growth and heat-resistance of grafted tomato under high temperature stress. J Agric Univ Hebei 33:27–29, 49Google Scholar
  29. Ekpong B, Somkul C (2007) Influence of different rootstocks for grafting on yield and quality of currant tomato (Lycopersicon pimpinellifolium Jusl). In: Proceedings of the 45th Kasetsart University Annual Conference, Bangkok, Thailand, 30 January-2 February 2007, pp 586-592Google Scholar
  30. Espinoza Arellano JJ, Chew Madinaveitia YI, Mascorro AG (2012) Evaluación económica del uso de injerto en tomate (Lycopersicon esculentum) bajo condiciones de invernadero. Produc Agrícola Agrofaz 12:57–62Google Scholar
  31. Estevez-Caparros JM, Diaz-Perez M, Camacho-Ferre F (2011) Influence of several rootstocks on yield of cultivars of pear cherry tomato cultivated under mesh greenhouse. J Food Agric Environ 9:364–368Google Scholar
  32. Farias EADP, Ferreirza RLF, Araujo Neto SED, Costa FC, Nascimento DS (2013) Organic production of tomatoes in the Amazon region by plants grafted on wild Solanum rootstocks. Ciênc Agrotecnol 37:323–329CrossRefGoogle Scholar
  33. Flomo ST (2010) Investigation of yield and quality of grafted heirloom and hybrid tomatoes. Dissertation, Western Kentucky UniversityGoogle Scholar
  34. Flores FB, Sanchez-Bel P, Estan MT, Martinez-Rodriguez MM, Moyano E, Morales B, Campos JF, Garcia-Abellan JO, Egea MI, Fernandez-Garcia N, Romojaro F, Bolarin MC (2010b) The effectiveness of grafting to improve tomato fruit quality. Sci Hortic 125:211–217CrossRefGoogle Scholar
  35. Freeman J, McAvoy T, Rideout S, Paret M, Olson S (2011) Utilization of grafted tomato seedlings for bacterial wilt resistance in open field production. Acta Hortic 914:337–339CrossRefGoogle Scholar
  36. Gajc-Wolska J, Kowalczyk K, Marcinkowska M, Radzanowska J, Bujalski D (2014) Influence of growth conditions and grafting on the yield, chemical composition and sensory quality of tomato fruit in greenhouse cultivation. J Elementol 20:73–81Google Scholar
  37. Gajc-Wolska J, Lyszkowska M, Zielony T (2010) The influence of grafting and biostimulators on the yield and fruit quality of greenhouse tomato cv. (Lycopersicon esculentum Mill.) grown in the field. Veg Crops Res Bull 72:63–70Google Scholar
  38. Gebologlu N, Ylmaz E, Cakmak P, Aydn M, Kasap Y (2011) Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Sci Res Essays 6:2147–2153CrossRefGoogle Scholar
  39. Ghosheh H, Al-Kawamleh M, Makhadmeh I (2010) Weed competitiveness and herbicidal sensitivity of grafted tomatoes (Solanum lycopersicon Mill.). J Plant Prot Res 50:307–313CrossRefGoogle Scholar
  40. Gioia FD, Serio F, Buttaro D, Ayala O, Santamaria P (2010) Influence of rootstock on vegetative growth, fruit yield and quality in ‘Cuore di Bue’, an heirloom tomato. J Hortic Sci Biotechnol 85:477–482CrossRefGoogle Scholar
  41. Giotis C, Theodoropoulou A, Cooper J, Hodgson R, Shotton P, Shiel R, Eyre M, Wilcockson S, Markellou E, Liopa-Tsakalidis A, Volakakis N, Leifert C (2012) Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems. Eur J Plant Pathol 134:605–617CrossRefGoogle Scholar
  42. Godoy Hernandez H, Castellanos Ramos JZ, Alcantar Gonzalez G, Sandoval Villa M, Munoz Ramos JDJ (2009) Efecto del injerto y nutricion de tomate sobre rendimiento, materia seca y extraccion de nutrimentos = Greenhouse tomato yield, dry matter and nutrient accumulation, as affected by grafting and nutrient supply. Terra Latinoam 27:1–11Google Scholar
  43. Gomes RF, Cruz FJR, Nunes RC, Castoldi R, Santos DMM, Braz LT (2016) Respostas enzimaticas na enxertia de tomateiro. Hortic Bras 34:491–497CrossRefGoogle Scholar
  44. Gomes RF (2013) Enxertia, atividade enzimática e orientaçãdo tomateiro com quatro hastes. Dissertation, Universidad Estadual Paulista, Campus de JaboticabalGoogle Scholar
  45. Goto R, Miguel AD, Marsal JI, Gorbe E, Calatayud A (2013) Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. J Plant Nutr 36:825–835CrossRefGoogle Scholar
  46. Goto R, Sirtori LF, Rodrigues JD, Lopes MC (2010) Produção de tomateiro, híbrido momotaro, em função do estádio das mudas e da enxertia = Production of tomato, momotaro hibrio according to seedling stage and grafting. Ciênc Agrotec 34:961–966CrossRefGoogle Scholar
  47. Granges A, Gillioz JM, Augsburger J, Nicollier F (2008) Varietes de tomate a grappes cultivees hors sol a basse temperature: valeur agronomique, analytique et gustative = Soilless truss tomato varieties cultivated under low temperature conditions: agronomic, analytical and sensory values. Rev Suisse Viticu, Arboric Hortic 40:223–229Google Scholar
  48. Guo J (2015) Effects of different grafting rootstocks on the growth, quality and yield of tomato. J Hebei Agric Sci 19:22–25, 64Google Scholar
  49. Gur A, Semel Y, Osorio S, Friedmann M, Seekh S, Ghareeb B, Mohammad A, Pleban T, Gera G, Fernie AR, Zamir D (2011) Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor Appl Genet 122:405–420PubMedCrossRefGoogle Scholar
  50. Haberal M, Korpe DA, Iseri OD, Sahin FI (2016) Grafting tomato onto tobacco rootstocks is a practical and feasible application for higher growth and leafing in different tobacco-tomato unions. Biol Agric Hortic 32:248–257CrossRefGoogle Scholar
  51. Hibar K, Daami-Remadi M, Jabnoun-Khiareddine H, El Mahjoub M (2006) Control of Fusarium crown and root rot of tomato caused by Fusarium oxysporum f.sp. radicis-lycopersici, by grafting onto resistant rootstocks. Plant Pathol J 5:161–165CrossRefGoogle Scholar
  52. Higashide T, Nakano A, Yasuba K (2014) Yield and dry matter production of a Japanese tomato ‘Momotaro York’ are improved by grafting onto a Dutch rootstock ‘Maxifort. J Jpn Soc Hortic Sci 83:235–243CrossRefGoogle Scholar
  53. Hoyos Echevarria P, Rollon Martinez G, Galvez Rodriguez B (2012) Influence of grafting on the yield and quality of tomato cultivars grown in greenhouse in Central Spain. Acta Hortic 927:449–454CrossRefGoogle Scholar
  54. Hu B (2016) Improved tomato grafting techniques. Dissertation, Ohio State UniversityGoogle Scholar
  55. Ibrahim M, Munira MK, Kabir MS, Islam AKMS, Miah MMU (2001) Seed germination and graft compatibility of wild Solanum as rootstock of tomato. Online J Biol Sci 1:701–703CrossRefGoogle Scholar
  56. Ilankoon J, Zoysa IJD, Wijesekara A (2001) Tomato grafting as a remedy for bacterial wilt in a protected agriculture system. Ann Sri Lanka Dept Agric 3:53–60Google Scholar
  57. Iott MC (2013) Utility of grafting and evaluation of rootstocks for the management of Verticillium wilt in tomato production in western North Carolina. Dissertation, North Carolina State UniversityGoogle Scholar
  58. Izal ER (2014) Valoración agronómica de la variedad de tomato Caramba (Lycopersicon esculentum) en invernadero: Ensayo de distintos patrones. Dissertation, Universidad Pública de NavarraGoogle Scholar
  59. Johnson SJ (2012) Grafting eggplant, tomato, and watermelon to manage Verticillium wilt caused by Verticillium dahliae. Dissertation, Washington State UniversityGoogle Scholar
  60. Kaskavalc G, Tuzel Y, Dura O, Oztekin GB (2009) Effects of alternative control methods against Meloidogyne incognita in organic tomato production. Ekoloji 18(72):23–31CrossRefGoogle Scholar
  61. Kaskavalci G, Akkurt HD (2012) Organik domates tarmnda Kok-ur nematodlar (Meloidogyne spp.)'na kars savasta baz yontemlerin birlikte kullanm etkinlikleri = Efficacy of the combined usage of several control methods against root-knot nematodes (Meloidogyne spp.) in organic tomato agriculture. Turk Entomol Derg 36:413–422Google Scholar
  62. Kawaguchi M, Taji A, Backhouse D, Oda M (2008) Anatomy and physiology of graft incompatibility in solanaceous plants. J Hortic Sci Biotechnol 83:581–588CrossRefGoogle Scholar
  63. Khah EM, Kakava E, Mavromatis A, Chachalis D, Goulas C (2006) Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J Appl Hortic 8:3–7Google Scholar
  64. Korenak P (2010) Primerjava različnih podlag za cepljenje paradižnika (Lycopersicon esculentum Mill.) = Comparison of different rootstock for grafting tomatoes (Lycopersicon esculentum Mill.). Dissertation, Univerze v Mariboru, SloveniaGoogle Scholar
  65. Kosec M (2011) Hidroponsko pridelovanje cepljenega paradižnika (Lycopersicum esculentum L. = Hidroponic growing of grafted tomato (Lycopersicum esculentum L.). Dissertation, Univerza v Ljubljani, SloveniaGoogle Scholar
  66. Kowalczyk K, Gajc-Wolska J (2011) Effect of the kind of growing medium and transplant grafting on the cherry tomato yielding. Acta Sci Polon Hort Cult 10:61–70Google Scholar
  67. Krumbein A, Schwarz D (2013) Grafting: a possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Sci Hortic 149:97–107CrossRefGoogle Scholar
  68. Kumar P, Edelstein M, Cardarelli M, Ferri E, Colla G (2015a) Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato. HortScience 50:1654–1661Google Scholar
  69. Kumar P, Lucini L, Rouyphael Y, Cardarelli M, Kalunke RM, Colla G (2015b) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477PubMedPubMedCentralGoogle Scholar
  70. Kumar P, Rouphael Y, Cardarelli M, Colla G (2015c) Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J Plant Nutr Soil Sci 178:848–860CrossRefGoogle Scholar
  71. Kunwar S, Paret ML, Olson SM, Ritchie L, Rich JR, Freeman JH, McAvoy T (2015) Grafting using rootstocks with resistance to Ralstonia solanacearum against Meloidogyne incognita in tomato production. Plant Dis 99:119–124CrossRefGoogle Scholar
  72. Latifah E, Korlina E, Boga K, Maryono J (2013) Grafting technology for sustainable improvement of tomato production: a field study in Kediri, East Java. In: Proceedings International Conference, 2013, 4th Green Technology, pp 49-53Google Scholar
  73. Lee MH, Kim JK, Lee HK, Kim KJ, Yu SH, Kim YS, Lee YS (2013) Reduction of bacterial wilt diseases with eggplant rootstock EG203-grafted tomatoes in the field trials. Res Plant Dis 19:108–113CrossRefGoogle Scholar
  74. Li GL, Zhang SP, Yang HL, Liang XA (2009) Study on grafting methods with Xianchongjue No. 3 as rootstock. J Changjiang Veg 2009(10):47–49Google Scholar
  75. Liang XA, Liang FF, Zhang SP, Jian H, Yang HL, Xie KY (2014) Studies on disease resistance and grafting effects of Xianchong-jue tomato rootstock series. J Henan Agric Sci 43:85–88Google Scholar
  76. Loos RA, Caliman FRB, Silva DJHD (2009) Enxertia, produção e qualidade de tomateiros cultivados em ambiente protegido = Grafting, production and quality of tomato growth in protected environment. Ciênc Rural 39:232–235CrossRefGoogle Scholar
  77. Lopez-Perez JA, Strange ML, Kaloshian I, Ploeg AT (2006) Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Prot 25:382–388CrossRefGoogle Scholar
  78. Lykas C, Kittas C, Zambeka A (2008) Water and fertilizers use efficiency in grafted and non grafted tomato plants on soilless culture. Acta Hortic 801:1551–1556CrossRefGoogle Scholar
  79. Ma HF, Wang XL, Chen LD (2004) Comparison of main properties of grafted and common seedling in Israel tomato. J Changjiang Veg 2004(11):48–49Google Scholar
  80. Mahmoud AMA (2014) Grafting as a tool to improve TYLCV-tolerance in tomato. J Hortic Sci Ornam Plant 6:109–115Google Scholar
  81. Marsic NK, Osvald J (2004) The influence of grafting on yield of two tomato (Lycopersicon esculentum Mill.) cultivars grown in a plastic house. Acta Agric Slovenica 83:243–249Google Scholar
  82. Martinez S, Garbi M, Grimaldi MC, Somoza J, Morelli G, Cerisola C (2014) Evaluacion de la respuesta agronomica de plantas de tomate injertadas en cultivo bajo invernadero = Evaluation of agronomic performance of grafted tomato plants in greenhouse cultivation. Rev Fac Agron La Plata 113:218–223Google Scholar
  83. Masterson SA (2013) Propagation and utilization of grafted tomatoes in the Great Plains. Dissertation, Kansas State UniversityGoogle Scholar
  84. Masterson SA, Rivard CL, Janke RR, Kennelly MM (2015) Effect of seedling shoot removal on the yield of grafted tomatoes in high tunnels in the central United States. Acta Hortic 1107:173–179CrossRefGoogle Scholar
  85. Mazuela A, Cepeda P, Cubillos V (2012) Efecto del injeto y del bioestimulante Fartum(R) sobre la produccion y calidad en tomate cherry = Effect of grafting and the biostimulant Fartum on production and quality in cherry tomatoes. Idesia 30:77–81CrossRefGoogle Scholar
  86. McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML (2012b) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47:621–625Google Scholar
  87. Meyer L (2016) Grafting to increase high tunnel tomato productivity in the central United States. Dissertation, Kansas State UniversityGoogle Scholar
  88. Miguel A, Marsal JI, Goto R, San Bautista A, Lopez-Galarza S, Pascual B, Maroto JV (2011) Improving the affinity of tomato grafted on Solanum torvum using an intermediate rootstock. Acta Hortic 898:291–295CrossRefGoogle Scholar
  89. Mišković A, Vujasinović V, Vukosavlijević V, Ilin Ž (2005) Efekti primene kalemljenja na kvalitet I prinos ploda paradajza = Effects of grafting on quality and yield of tomato fruits. Letopis Naucnih Radova 29:204–209Google Scholar
  90. Mohammed SMT, Humidan M, Boras M, Abdalla OA (2009) Effect of grafting tomato on different rootstocks on growth and productivity under glasshouse conditions. Asian J Agric Res 3:47–54Google Scholar
  91. Mohsenian Y, Roosta HR, Karimi HR, Esmaeilizade M (2012) Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica 50:411–421CrossRefGoogle Scholar
  92. Montesano FF, Parente A, Grassi F, Santamaria P (2014) Posidonia-based compost as a growing medium for the soilless cultivation of tomato. Acta Hortic 1034:277–282CrossRefGoogle Scholar
  93. Neocleous D (2010) Yield, nutrients, and antioxidants of tomato in response to grafting and substrate. Int J Veg Sci 16:212–221CrossRefGoogle Scholar
  94. Neu K, Nair A (2017) Evaluation of grafted and non-grafted hybrid and heirloom tomatoes in a high tunnel. Farm Prog Rep 2016:7–13Google Scholar
  95. Nicoletto C, Tosini F, Sambo P (2013a) Effect of grafting and ripening conditions on some qualitative traits of ‘Cuore di bue’ tomato fruits. J Sci Food Agric 93:1397–1403PubMedCrossRefGoogle Scholar
  96. Nicoletto C, Tosini F, Sambo P (2013b) Effect of grafting on biochemical and nutritional traits of ‘Cuore di Bue’ tomatoes harvested at different ripening stages. Acta Agric Scand B Soil Plant Sci 63:114–122Google Scholar
  97. Nilsen ET, Freeman J, Grene R, Tokuhisa J (2014b) A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One 9:e115380PubMedCrossRefPubMedCentralGoogle Scholar
  98. Nitzsche PJ, Kline W, Rabin J (2013) The influence of grafting on high tunnel tomato production. Proc N J Agric Convention Trade Show New Jersey Agric Convention Trade Show 58:12–14Google Scholar
  99. Ntatsi G, Savvas D, Ntatsi G, Klaring HP, Schwarz D (2014) Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. J Am Soc Hortic Sci 139:230–243Google Scholar
  100. O’Connell S (2008) Grafted tomato performance in organic production systems: nutrient uptake, plant growth, and fruit yield. Dissertation, North Carolina State UniversityGoogle Scholar
  101. Oda M, Okada K, Sasaki H (2000) Effects of transplant container and Solanum rootstocks on the incidences of overgrowth and unmarketable fruits in tomato plants planted with plug seedlings. Environ Control Biol 38:273–280CrossRefGoogle Scholar
  102. Onduso JN (2014) Management of bacterial wilt of tomato by use of resistant rootstock. Dissertation, University of Nairobi, KenyaGoogle Scholar
  103. Owusu SB, Kwoseh CK, Starr JL, Davies FT (2016) Grafting for management of root-knot nematodes, Meloidogyne incognita, in tomato (Solanum lycopersicum L.). Nematropica 46:14–21Google Scholar
  104. Oztekin GB, Giuffrida F, Tuzel Y, Leonardi C (2009b) Is the vigour of grafted tomato plants related to root characteristics? J Food Agric Environ 7:364–368Google Scholar
  105. Oztekin GB, Tuzel Y, Tuzel IH (2013b) Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hortic 149:55–60CrossRefGoogle Scholar
  106. Oztekin GB, Tuzel Y (2011) Salinity response of some tomato rootstocks at seedling stage. Afr J Agric Res 6:4726–4735Google Scholar
  107. Palada MC, Ali M (2007) Evaluation of technologies for improving year-round production of safe vegetables in peri-urban agriculture of Southeast Asia. Acta Hortic 762:271–281CrossRefGoogle Scholar
  108. Palada MC, Wu DL (2007b) Increasing off-season tomato production using grafting technology for peri-urban agriculture in Southeast Asia. Acta Hortic 742:125–131CrossRefGoogle Scholar
  109. Palkovics L, Petroczy M, Hevesi M, Salamon P (2007) A globalizacio kockazata: uj novenyi korokozok megjelenese hazankban = The risk of globalization: appearance of new plant pathogens in Hungary. In: 12. Tiszantuli Novenyvedelmi Forum, 17-18 October 2007, Debrecen, Hungary, pp 33-35Google Scholar
  110. Paret ML, Freeman J, McAvoy T, Rideout S, Olson SM (2012) Grafting for management of bacterial wilt and root-knot nematodes in tomato production. Fla Tomato Inst Proc 2012:9–11Google Scholar
  111. Patakioutas G, Dimou D, Kostoula O, Yfanti P, Paraskevopoulos A, Ntatsi G, Savvas D (2015) Inoculation of tomato roots with beneficial micro-organisms as a means to control Fusarium oxysporum f. sp. lycopersici and improve nutrient uptake and yield. Acta Hortic 1107:141–148CrossRefGoogle Scholar
  112. Pedo T, Aumonde TZ, Oliveira LDC, Nora L, Mauch CR (2013) Produtividade e caracteristicas qualitativas do tomateiro submetidas a enxertia = Yield and qualitative characteristics of grafted tomato. Rev Cienc Agrar / Amazon J Agric Environ Sci 56:179–183Google Scholar
  113. Peil RMN, Galvez JL (2004) Redimiento de plantas de tomate injertadas y efecto de la densidad de tallos en el sistema hidroponico = Yield of tomato crop as a result of grafting and shoot density in hydroponic system. Hortic Bras 22:265–270CrossRefGoogle Scholar
  114. Pogonyi A, Pek Z, Helyes L, Lugasi A (2005) Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Aliment 34:453–462CrossRefGoogle Scholar
  115. Qaryouti MM, Qawasmi W, Hamdan H, Edwan M (2007) Tomato fruit yield and quality as affected by grafting and growing system. Acta Hortic 741:199–206CrossRefGoogle Scholar
  116. Qin D, Li YH, Li YY, Mo HK, Liu CC (2013) Field screening for disease-resistant rootstocks of tomato. J Changjiang Veg 2013:20–22Google Scholar
  117. Rahmatian A, Delshad M, Salehi R (2014) Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hortic Environ Biotechnol 55:115–119CrossRefGoogle Scholar
  118. Riga P (2015) Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hortic Environ Biotechnol 56:626–638CrossRefGoogle Scholar
  119. Riga P, Benedicto L, Garcia-Flores L, Villano D, Medina S, Gil-Izquierdo A (2016) Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. J Food Compos Anal 46:50–59CrossRefGoogle Scholar
  120. Rivard CL, Louws FJ (2008b) Grafting to manage soilborne diseases in heirloom tomato production. HortScience 43:2104–2111Google Scholar
  121. Rivard CL, O'Connell S, Peet MM, Louws FJ (2010) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94:1015–1021CrossRefGoogle Scholar
  122. Rivard CL, O’Connell S, Peet MM, Welker RM, Louws FJ (2012b) Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Dis 96:973–978CrossRefGoogle Scholar
  123. Romano D, Paratore A (2001) Effects of grafting on tomato and eggplant. Acta Hortic 559:149–153CrossRefGoogle Scholar
  124. Semiz GD, Suarez DL (2015) Tomato salt tolerance: impact of grafting and water composition on yield and ion relations. Turk J Agric For 39:876–886CrossRefGoogle Scholar
  125. Shou W, Dong W, Chen J, Xu Z, Zhou S, Dai D, Lei J (2004) Effects of rootstock varieties and grafting methods on growth and photosynthesis of tomato. Acta Agric Zhejiang 16:136–138Google Scholar
  126. da Silva EG (2015) Resposta enzimátálógica e produtiva do tomateiro e desempenho de porta enxertos resistentes à murcha bacteriana. Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de BotucatuGoogle Scholar
  127. da Silva ES (2013) Enxertia no controle da murcha bacteriana, na atividade de enzimas e produçã em tomateiro. Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de BotucatuGoogle Scholar
  128. Silverman EJ (2015) Inoculation methods and screening of selected tomato accessions for bacterial wilt incidence and managing bacterial wilt by grafting with disease resistant rootstocks in North Carolina. Dissertation, North Carolina State UniversityGoogle Scholar
  129. Singh S, Singh DR, Kumar K, Birah A (2014) Eco-friendly management modules for bacterial wilt (Ralstonia solanacearum) of tomato for protected cultivation in a tropical island ecosystem. Biol Agric Hortic 30:219–227CrossRefGoogle Scholar
  130. Sirtoli LF, Cerqueira RC, de Souza Fernandes LM, Rodrigues JD, Goto R, do Amaral JL (2008) Avaliação de diferentes porta-enxertos de tomateiro cultivados em ambiente protegido = Use of rootstocks in plants of tomato cultivated under protecting culture. Biodiversidade 7:24–28Google Scholar
  131. Sirtoli LF, Cerqueira RC, Rodrigues JD, Goto R, Braga CL (2011) Enxertia no desenvolvimento e qualidade de frutos de tomateiro sob diferentes porta-enxertos em cultivo protegido = Grafting in the development and fruit quality of tomato under different rootstocks in protected cultivation. Sci Agrar Parana 10:15–22Google Scholar
  132. Suchoff D, Gunter C, Schultheis J, Louws FJ (2015) On-farm grafted tomato trial to manage bacterial wilt. Acta Hortic 1086:119–128CrossRefGoogle Scholar
  133. Theodoropoulou A, Giotis C, Hunt J, Gilroy J, Toufexi E, Liopa-Tsakalidis A, Markellou A, Lueck L, Seal C, Leifert C (2007) Effect of variety choice and use of resistant rootstock on crop yield and quality parameters of tomato plants grown in organic, low input and conventional production systems/growth media. In: Niggli U, Liefert C, Alfoldi T, Luck L, Willer H (eds) Improving sustainability in organic and low input food production systems. Proceedings of the 3rd International Congress of the European Integrated Project Quality Low Input Food (QLIF), University of Hohenheim, Germany, 20-23 March, 2007. Research Institute of Organic Agriculture, Frick, Switzerland, pp 177-180Google Scholar
  134. Tian Y, Cao Z, Zhang X, Guo W, Mei X, Gao L (2009a) Changes of soil enzyme activities under different agricultural treatments in greenhouse and its correlation analysis. Plant Nutr Fertil Sci 15:857–864Google Scholar
  135. Tian Y, Dong LD, Jiao YG, Guo JH, Shi LQ (2010) Study on yield-increasing mechanism of grafted tomato. J Hebei Agric Sci 14(10):15–17Google Scholar
  136. Tian Y, Zhang X, Liu J, Chen Q, Gao L (2009b) Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci Hortic 123:139–147CrossRefGoogle Scholar
  137. Truffault V, Fifel F, Longuenesse JJ, Vercambre G, le Quillec S, Gautier H (2015) Impact of temperature integration under greenhouse on energy use efficiency, plant growth and development and tomato fruit quality depending on cultivar rootstock combination. Acta Hortic 1099:95–100CrossRefGoogle Scholar
  138. Tuhtar S (2011) Gojenje treh sort cepljenega paradižnika (Lycopersicon esculentum Mill.) na dveh podlagah = Three cultivars of grafted tomatoes (Lycopersicon esculentum Mill.) growing on two rootstocks. Dissertation, Univerza v Ljubljani, SloveniaGoogle Scholar
  139. Turhan A, Ozmen N, Serbec MS, Senz V (2011) Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic Sci 38:142–149CrossRefGoogle Scholar
  140. Turkmen O, Seymen M, Dursun A (2010) Effects of different rootstocks and cultivars on yield and some yield components of grafted tomato. Bull Univ Agric Sci Vet Med Cluj Napoca Hortic 67:284–291Google Scholar
  141. Tuzel Y, Duyar H, Oztekin GB, Gul A (2009) Domates anaclarnn farkl dikim tarihlerinde bitki gelisimi, scaklk toplam istegi, verim ve kaliteye etkileri = Effects of tomato rootstocks on plant growth, temperature sum requirements, yield and quality in different planting dates. Ege Univ Ziraat Fak Derg 46:79–92Google Scholar
  142. Velasco-Alvarado MJ (2013) Anatomia y manejo agronomico de plantas injertadas en jitomate (Solanum lycopersicum L.). Dissertation, Universidad Autonoma Chapingo, MexicoGoogle Scholar
  143. Velasco-Alvarado MJ, Castro-Brindis R, Castillo-Gonzalez AM, Avitia-Garcia E, Sahagun-Castellanos J, Lobato-Ortiz R (2016) Composicion mineral, biomasa y rendimiento en tomate (Solanum lycopersicum L.) injertado/Mineral composition, biomass and fruit yield in grafted tomato (Solanum lycopersicum L.). Interciencia 41:703–708Google Scholar
  144. Venema JH, Dijk BE, Bax JM, Hasselt PRV, Elzenga JTM (2008b) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63:359–367CrossRefGoogle Scholar
  145. Verdejo-Lucas S, Cortada L, Sorribas FJ, Ornat C (2009) Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathol 58:990–998CrossRefGoogle Scholar
  146. Verdejo-Lucas S, Javier Sorribas F (2008) Resistance response of the tomato rootstock SC 6301 to Meloidogyne javanica in a plastic house. Eur J Plant Pathol 121:103–107CrossRefGoogle Scholar
  147. Voutsela S, Yarsi G, Petropoulos SA, Khan EM (2012) The effect of grafting of five different rootstocks on plant growth and yield of tomato plants cultivated outdoors and indoors under salinity stress. Afr J Agric Res 7:5553–5557Google Scholar
  148. Vrcek IV, Samobor V, Bojic M, Medic-Saric M, Vukobratovic M, Erhatic R, Horvat D, Matotan Z (2011) The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Sp J Agric Res 9:844–851CrossRefGoogle Scholar
  149. Wang H, Ru S, Wang L, Fang L, Ren H, Feng Z (2009) Control of tomato bacterial wilt with grafting. Acta Agric Zhejiang 21:283–287Google Scholar
  150. Wang M, Zhang G, Wang X, Wen S, Cui S, Shi Y (2011) A new tomato rootstock variety highly resistant to root-knot nematodes—‘Kezhen No. 1’. China Veg 2011(14):80–83Google Scholar
  151. Wang MY (2010) The influence of tomato rootstocks of immune root-knot nematode on scion. J Anhui Agric Sci 38:2991–2993Google Scholar
  152. Wang S, Kong Y, Yang R, Cheng J, Li H (2012) Effect of rootstocks on fruit quality of tomato growing in solar greenhouse. Acta Hortic 944:147–151CrossRefGoogle Scholar
  153. Wimer AF (2009) The spatial and temporal distribution and management of tomato bacterial wilt on Virginia’s Eastern Shore. Dissertation, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  154. Yan GY (2011) Preliminary report on the grafting cultivation of cherry tomato Fusarium wilt resistance. Hortic Seed 2011(1):27–28Google Scholar
  155. Yarsi G (2011) Effects of grafted seedling use on yield, growth and quality parameters of tomato growing in greenhouse. Acta Hortic 923:311–314CrossRefGoogle Scholar
  156. Yasinok AE, Sahin FI, Eyidogan F, Kuru M, Haberal M (2009b) Grafting tomato plant on tobacco plant and its effect on tomato plant yield and nicotine content. J Sci Food Agric 89:1122–1128CrossRefGoogle Scholar
  157. Zhang CK, Kang YH, Zhang LS (2009a) Selection of grafted rootstocks of cherry tomato. J Changjiang Veg 2009(14):42–44Google Scholar
  158. Zhang CK, Luo YH, Zhang LS (2008) Effects of grafting cultivation on bacterial wilt resistance and yield of cherry tomato. Acta Agric Jiangxi 20(4):68–69Google Scholar
  159. Zhang S, Liang X, Yang H, Jian H, Wang XE (2009b) Selection and breeding of tomato rootstock variety with resistance to root-knot nematodes. China Veg 2009(16):74–77Google Scholar
  160. Zhang ZH, Xiao JW, Liu Y, Chen SX, Yang JG, Liu WB (2010) Grafting high resistance rootstock King Qing Yi Hao to prevent tomato bacterial wilt. Chin Agric Sci Bull 26(11):276–278Google Scholar
  161. Zheng C, Cao Z, Chen G (2004) Effect of rootstock on tomato growth and yield. China Veg 2004(4):37–38Google Scholar
  162. Zheng CY, Cao ZP, Chen GK, Chen YF, Yang H (2005) Study on the grafted tomatoes controlling root-nematode in greenhouse. Chin J Eco Agric 13:164–166Google Scholar
  163. Zhou C, Zhang X, Yin X (2001) Comparison trial of grafted and self-rooted seedlings of tomato. China Veg 2001(4):32–33Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Michael L. Grieneisen
    • 1
  • Brenna J. Aegerter
    • 2
  • C. Scott Stoddard
    • 3
  • Minghua Zhang
    • 1
  1. 1.Department of Land, Air & Water ResourcesUniversity of CaliforniaDavisUSA
  2. 2.University of California Cooperative ExtensionStocktonUSA
  3. 3.University of California Cooperative ExtensionMercedUSA

Personalised recommendations