Advertisement

Integrating links between tree coverage and cattle welfare in silvopastoral systems evaluation

  • Karen F. Mancera
  • Heliot Zarza
  • Lorena López de Buen
  • Apolo Adolfo Carrasco García
  • Felipe Montiel Palacios
  • Francisco Galindo
Research Article

Abstract

Livestock production in Latin America is strongly associated with deforestation. Silvopastoral systems are an alternative; however, the relation between animal welfare and tree coverage has been poorly studied. We hypothesized that a connection between these features exist and that its evaluation can influence system management decisions. A general assessment of tree coverage percentage and tree distribution in ten Mexican cattle ranches was performed using satellite images. Animal welfare indicators from the Welfare Quality® dairy cattle protocol measurable in extensive conditions were also assessed. Tree coverage percentage was highly variable and formed a gradient (52.42% in Ranch J2 to 2.00% in Ranch S1). The tree coverage percentage of two ranches was deemed as silvopastoral (between 22 and 35%). Body condition was better in ranches with high tree coverage compared to those with low (P < 0.05). The percentage of wooded grassland was negatively correlated with flight distance reductions (P < 0.05). Less integument alterations were present in high tree coverage ranches compared to low (P < 0.05). Our landscape analysis showed the presence of different vegetal compositions in silvopastoral systems of the Mexican tropics. This knowledge can be applied to improve management decisions and promote the use of silvopastoral systems in the area. Additionally, this is the first study proving a relationship between landscape structure and welfare indicators, since body condition and integument alterations were positively affected. Although our results need further research, similar analyses can be implemented to improve cattle well-being in production systems associated to trees. In conclusion, landscape analysis in combination with animal welfare measurements could increase productivity by identifying important links between cattle welfare and the presence of trees, as well as help to identify areas of further research for the implementation of silvopastoral systems in Mexico.

Keywords

Animal welfare Dairy cattle Flight distance Silvopastoral systems Sustainability Welfare quality 

Notes

Funding information

We would like to thank the Welfare Quality WQ® project as well as the Program PAPIIT-UNAM (RV200715) for the funding given to this study.

References

  1. Aguilar S, Condit R (2001) Use of native tree species by an Hispanic community in Panama. Econ Bot 55(2):223–235.  https://doi.org/10.1007/BF02864560 CrossRefGoogle Scholar
  2. Altan Ö, Pabuçcuoğlu A, Altan A, Konyalioğlu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44(4):545–550.  https://doi.org/10.1080/00071660310001618334 CrossRefPubMedGoogle Scholar
  3. Améndola L, Solorio F, Ku-Vera J, Améndola-Massiotti R, Zarza H, Galindo F (2016) Social behaviour of cattle in tropical silvopastoral and monoculture systems. Animal 10(05):863–867.  https://doi.org/10.1017/S1751731115002475 CrossRefPubMedGoogle Scholar
  4. Armstrong D (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77(7):2044–2050.  https://doi.org/10.3168/jds.S0022-0302(94)77149-6 CrossRefPubMedGoogle Scholar
  5. Balvanera P, Cotler H, Aburto O, Aguilar A, Aguilera M, Aluja M, Andrade A, Arroyo I, Ashworth L, Astier M (2009) Estado y tendencias de los servicios ecosistémicos. In: Capital natural de México, vol. II: Estado de conservacion y tedencias de cambio, pp 185–245.Google Scholar
  6. Bautista Tolentino M (2009) Sistemas agro y silvopastoriles en El Limón, municipio de Paso de Ovejas, Veracruz, México. Master Thesis, Institución de Enseñanza e Investigación en Ciencias Agricolas.Google Scholar
  7. Bennett IL, Finch VA, Holmes CR (1985) Time spent in shade and its relationship with physiological factors of thermoregulation in three breeds of cattle. Appl Anim Behav Sci 13(3):227–236.  https://doi.org/10.1016/0168-1591(85)90046-2 CrossRefGoogle Scholar
  8. Betancourt K, Ibrahim M, Harvey C, Vargas B (2003) Efecto de la cobertura arbórea sobre el comportamiento animal en fincas ganaderas de doble propósito en Matiguás, Matagalpa, Nicaragua. Agrofor Americ 10(39–40):47–51Google Scholar
  9. Bhatt R, Misra L, Tiwari H (2002) Growth and biomass production in tropical range grasses and legumes under light stress environment. Indian J Plant Physiol 7(4):349–353Google Scholar
  10. Blackshaw JK, Blackshaw A (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Anim Prod Sci 34(2):285–295.  https://doi.org/10.1071/EA9940285 CrossRefGoogle Scholar
  11. Broom D, Galindo F, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc R Soc B 280:20132025.  https://doi.org/10.1098/rspb.2013.2025 CrossRefPubMedGoogle Scholar
  12. Broom DM (1991) Animal welfare: concepts and measurement. J Anim Sci 69(10):4167–4175.  https://doi.org/10.2527/1991.69104167x CrossRefPubMedGoogle Scholar
  13. Brossard M, Wikel S (2004) Tick immunobiology. Parasitol 129(S1):S161–S176.  https://doi.org/10.1017/S0031182004004834 CrossRefGoogle Scholar
  14. Carvalho MM, Freitas VP, Xavier DF (2002) Initial flowering, dry matter yield and nutritive value of tropical forage grasses under natural shading. Pesqui Agropecu Bras 37(5):717–722.  https://doi.org/10.1590/S0100-204X2002000500018 CrossRefGoogle Scholar
  15. Casasola Coto F (2000) Productividad de los sistemas silvopastoriles tradicionales en Moropotente, Estelí, Nicaragua. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza.Google Scholar
  16. Castañeda Nieto Y, Álvarez Morales G, Melgarejo Velazquez L (2003) Ganancia de peso, conversión y eficiencia alimentaria en ovinos alimentados con fruto (semilla con vaina) de parota (Enterolobium cyclocarpum) y pollinaza. Vet Mex 34(1):39–46Google Scholar
  17. Chacón M, Harvey C (2008) Contribución de las cercas vivas a la estructura y la conectividad de un paisaje fragmentado en Río Frío, Costa Rica. In: Harvey CA, Sáenz J (eds) Evaluación y conservación de la biodiversidad en paisajes fragmentados de Mesoamérica. CATIE pp 225–248.Google Scholar
  18. Challenger A, Caballero J, Zarate S, Elizondo R (1998) Utilización y conservación de los ecosistemas terrestres de México: pasado, presente y futuro. Comisión Nacional para el Concimiento y Uso de la Biodiversidad, Mexico CityGoogle Scholar
  19. Daily GC, Ehrlich PR, Sanchez-Azofeifa GA (2001) Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol Appl 11(1):1–13. https://doi.org/10.1890/1051-0761(2001)011[0001:CBUOHD]2.0.CO;2Google Scholar
  20. De Haan C, Steinfeld H, Blackburn H (1997) Livestock & the environment: finding a balance. European Commission Directorate-General for Development. Development Policy Sustainable Development and Natural Resources Rome, ItalyGoogle Scholar
  21. Dias-Filho M (2000) Growth and biomass allocation of the C4 grasses Brachiaria brizantha and B. humidicola under shade. Pesqui Agropec Bras 35(12):2335–2341.  https://doi.org/10.1590/S0100-204X2000001200003 CrossRefGoogle Scholar
  22. Durr P, Rangel J (2000) The response of Panicum maximum to a simulated subcanopy environment 1. Soil x shade interaction. Trop Grass 34(2):110–117. 10.11595.9991Google Scholar
  23. Esquivel H (2007) Tree resources in traditional silvopastoral systems and their impact on productivity and nutritive value of pastures in the dry tropics of Costa Rica. Phd Thesis. Tropical Agriculture Research and Higher Education Center.Google Scholar
  24. Estrada A, Coates-Estrada R, Dadda AA, Cammarano P (1998) Dung and carrion beetles in tropical rain forest fragments and agricultural habitats at Los Tuxtlas, Mexico. J Trop Ecol 14(5):577–593.  https://doi.org/10.1017/S0266467498000418 CrossRefGoogle Scholar
  25. FAO (2009) The state of world agriculture and food 2009. Cattle production examined, Rome, ItalyGoogle Scholar
  26. FAO (2013) Reviewed strategic framework 2010–2019. FAO, Rome, ItalyGoogle Scholar
  27. FAO (2016) State of the World’s Forests 2016. FAO Rome, ItalyGoogle Scholar
  28. Faure R, Fernández Limia O, Morales D (2004) Serum xortisol levels in Holstein heifers in dry and rainy periods of subtropical climate URL http://comunidad.veterinaria.org/articulos/ articulo.cfm. Accesed on 03 Dec 2016.
  29. Fernández ME, Gyenge JE, Dalla Salda G, Schlichter TM (2002) Silvopastoral systems in northwestern Patagonia. I: growth and photosynthesis of Stipa speciosa under different levels of Pinus ponderosa cover. Agrofor Syst 55(1):27–35.  https://doi.org/10.1023/A:1020238330817 CrossRefGoogle Scholar
  30. Hahn G (1982) Housing for cattle, sheep, and poultry in the tropics. In: Yosef MK (ed) Animal Production in the Tropics. Praeger Publishers, New York, pp 43–72Google Scholar
  31. Hahn G (1999) Dynamic responses of cattle to thermal heat loads. J Anim Sci. 77(suppl 2):10–20.  https://doi.org/10.2527/1997.77suppl_210x PubMedGoogle Scholar
  32. Harmand J-M, Donfack P, Njiti CF (2003) Tree-root systems and herbaceous species-characteristics under tree species introduced into grazing lands in subhumid Cameroon. Agrofor Syst 59(2):131–140.  https://doi.org/10.1023/A:1026313029783 CrossRefGoogle Scholar
  33. Harvey CA, Medina A, Sánchez DM, Vílchez S, Hernández B, Saenz JC, Maes JM, Casanoves F, Sinclair FL (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16(5):1986–1999.  https://doi.org/10.1890/1051-0761 CrossRefPubMedGoogle Scholar
  34. Harvey CA, Sáenz JC (2008) Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica. INBIO, Mexico CityGoogle Scholar
  35. Huertas S, Paranhos da Costa M, Manteca X, Galindo F, Morales M (2009) An overview of the animal welfare assessment system in Latin America. In: Keeling L (ed) An overview of the developement of the Welfare Quality® assessment systems. Welfare Quality® Reports, Sweden, pp 79–93Google Scholar
  36. Ibrahim M, Camero A, Camargo JC, Andrade H (1999) Sistemas silvopastoriles en América Central: experiencias de CATIE URL http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/handle/11554/4026/Sistemas_silvopastoriles_en_America.pdf?sequence=1&isAllowed=y. Accesed on 03 Dec 2016.
  37. Ibrahim M, Casasola F, Villanueva C, Murgueitio E, Ramírez E, Sáenz J, Sepúlveda C (2011) Payment for environmental services as a tool to encourage the adoption of silvopastoral systems and restoration of agricultural landscapes dominated by cattle in Latin America. Restoring Degraded Landscapes. In: F. Montagnini, and C. Finney (eds) Restoring Degraded Landscapes with Native Species in Latin America. Nova Science Publishers, New York.Google Scholar
  38. Ibrahim M, Villanueva C, Mora J, Mosquera-Losada M, Rigueiro-Rodríguez A, McAdam J Traditional and improved silvopastoral systems and their importance in sustainability of livestock farms. In: Silvopastoralism and sustainable land management. Proceedings of an international congress on silvopastoralism and sustainable management held in Lugo, Spain, 2004. CABI Publishing, pp 13–18.Google Scholar
  39. Jones RB (1996) Fear and adaptability in poultry: insights, implications and imperatives. Worlds Poult Sci J 52(02):131–174.  https://doi.org/10.1079/WPS19960013 CrossRefGoogle Scholar
  40. Kephart KD, Buxton DR, Taylor ES (1992) Growth of C3 and C4 perennial grasses under reduced irradiance. Crop Sci 32(4):1033–1038.  https://doi.org/10.2135/cropsci1992.0011183X003200040040x CrossRefGoogle Scholar
  41. Ku Vera J 2005 Nutritive value of trees and shrubs for ruminants. In: Silvopastoralism and Sustainable Land Management: Proceedings of an International Congress on Silvopastoralism and Sustainable Management Held in Lugo, Spain, in April. CABI, p 83.Google Scholar
  42. Le Neindre P, Guémené D, Arnould C, Leterrier C, Faure J, Prunier A, Meunier-Salaün M Space, environmental design and behaviour: effect of space and environment on animal welfare. In: Global conference on animal welfare: an OIE initiative, 2004. Citeseer, pp 23–25.Google Scholar
  43. Leme T, Pires MDF, Verneque RDS, Alvim MJ, Aroeira LJM (2005) Comportamento de vacas mestiças Holandês x Zebu, em pastagem de Brachiaria decumbens em sistema silvipastoril URL http://www.scielo.br/pdf/cagro/v29n3/a23. Accesed on 03 Dec 2016.
  44. Limpens H, Kapteyn K (1991) Bats, their behaviour and linear landscape elements. Myotis 29(6):63–71Google Scholar
  45. Masseti M (2009) Protected areas and endemic species. In: Gherardi F, Corti C, Gualtieri M (eds) Biodiversity Conservation and Habitat Management-Volume I. Eolss Publishers, Oxford UK, pp 118–128Google Scholar
  46. Mendoza J, Jiménez E, Lozano-Zambrano F, Caycedo-Rosales P, Renjifo L (2007) Identificación de elementos del paisaje prioritarios para la conservación de biodiversidad en paisajes rurales de los Andes Centrales de Colombia. In: Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica, pp 251–288Google Scholar
  47. Montagnini F, El pago de servicios ambientales (PSA) como herramienta para fomentar la restauración y el desarrollo rural (2009). In: XIII Congreso Forestal Mundial. Buenos Aires, Argentina.Google Scholar
  48. Murgueitio E (2005) Silvopastoral systems in the Neotropics. International Silvopastoral and Sustainable Land Management. Silvopastoralism and sustainable land management. In: Proceedings of an international congress on silvopastoralism and sustainable management. CABI, Lugo, Spain.Google Scholar
  49. Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663.  https://doi.org/10.1016/j.foreco.2010.09.027 CrossRefGoogle Scholar
  50. Murgueitio E, Giraldo C (2009) Sistemas silvopastoriles y control de parásitos. Revista Carta Fedegan 115:60–63Google Scholar
  51. Ong C, Corlett J, Singh R, Black C (1991) Above and below ground interactions in agroforestry systems. For Ecol Manag 45(1):45–57.  https://doi.org/10.1016/0378-1127(91)90205-A CrossRefGoogle Scholar
  52. Ortega M, Carranco M, Mendoza G, Castro G (1998) Chemical composition of Guazuma ulmifolia Lam and its potential for ruminant feeding. Revista Cubana de Ciencia Agricola 32(4):411–415Google Scholar
  53. Pagot J (1992) Animal production in the tropics and subtropics. MacMillan Press Ltd, LondonGoogle Scholar
  54. Pérez E, Soca M, Díaz L, Corzo M (2008) Comportamiento etológico de bovinos en sistemas silvopastoriles en Chiapas, México. Pastos y Forrajes 31(2):1–1Google Scholar
  55. Petit LJ, Petit DR (2003) Evaluating the importance of human-modified lands for neotropical bird conservation. Conserv Biol 17(3):687–694.  https://doi.org/10.1046/j.1523-1739.2003.00124.x CrossRefGoogle Scholar
  56. Pezo D, Ibrahim M (1998) Sistemas Silvopastoriles, Módulo de enseñanza agroforestal No 2. Materiales de Enseñanza No.40. Turrialba, Costa RicaGoogle Scholar
  57. Pires M, Salla L, Castro C, Paciullo D, Peixoto M, Teodoro R, Aroeira L, Costa F (2008) Physiological and behavioural parameters of crossbred heifers in single Brachiaria decumbens pasture and in silvopastoral system URL http://www.agrecol.de/climadapt/files/LGCC_procdings.pdf#page=127 Accesed 03 Dec 2016.
  58. Power I, Thorrold B, Balks M (2003) Soil properties and nitrogen availability in silvopastoral plantings of Acacia melanoxylon in North Island, New Zealand. Agrofor Syst 57(3):225–237.  https://doi.org/10.1023/A:1024838311287 CrossRefGoogle Scholar
  59. Rao M, Nair P, Ong C (1998) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38:3–50.  https://doi.org/10.1023/A:1005971525590 CrossRefGoogle Scholar
  60. Regula G, Danuser J, Spycher B, Wechsler B (2004) Health and welfare of dairy cows in different husbandry systems in Switzerland. Prev Vet Med 66(1–4):247–264.  https://doi.org/10.1016/j.prevetmed.2004.09.004 CrossRefPubMedGoogle Scholar
  61. Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2006) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agrofor Amer 45:37–48Google Scholar
  62. Silva JARD, Araújo AAD, Lourenço Júnior JDB, Santos NDFAD, Viana RB, Garcia AR, Rondina D, Grise MM (2014) Hormonal changes in female buffaloes under shading in tropical climate of Eastern Amazon, Brazil. Revista Brasileira de Zootecnia 43:44–48.  https://doi.org/10.1590/S1516-35982014000100007 CrossRefGoogle Scholar
  63. Solorio-Sánchez F, Armendariz-Yañez I, Ku-Vera J (2000) Chemical composition and in vitro dry matter digestibility of some fodder trees from south-east México. Livest Res Rural Dev 16:4–7Google Scholar
  64. Steinfeld H, Gerber P, Wassenaar T, Castel V, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Organization of the United Nations.Google Scholar
  65. Topps J (1992) Potential, composition and use of legume shrubs and trees as fodders for livestock in the tropics. J Agric Sci 118(01):1–8.  https://doi.org/10.1017/S0021859600067940 CrossRefGoogle Scholar
  66. Torres MG, Ortega M, Alejos I, Piloni J (2009) Importancia del estrés social en el ganado bovino lechero. Revista Chapingo Serie Zonas Áridas 8(2):81–88Google Scholar
  67. Van Oudenhoven APE, Petz K, Alkemade R, Hein L, de Groot RS (2012) Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol Indic 21:110–122.  https://doi.org/10.1016/j.ecolind.2012.01.012 CrossRefGoogle Scholar
  68. Verboom B, Huitema H (1997) The importance of linear landscape elements for the pipistrellePipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecol 12(2):117–125.  https://doi.org/10.1007/BF02698211 CrossRefGoogle Scholar
  69. Waiblinger S, Menke C, Fölsch D (2003) Influences on the avoidance and approach behaviour of dairy cows towards humans on 35 farms. App Anim Behav Sci 84(1):23–39.  https://doi.org/10.1016/S0168-1591(03)00148-5 CrossRefGoogle Scholar
  70. WQ (2009) Welfare Quality® assessment protocol for cattle. Lelystad, NetherlandsGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Karen F. Mancera
    • 1
  • Heliot Zarza
    • 2
  • Lorena López de Buen
    • 3
  • Apolo Adolfo Carrasco García
    • 3
  • Felipe Montiel Palacios
    • 3
  • Francisco Galindo
    • 1
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Departamento de Ciencias AmbientalesCBS, Universidad Autónoma Metropolitana Unidad Lerma Lerma de VilladaMexico
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad VeracruzanaVeracruzMexico

Personalised recommendations