Allelopathy in Poaceae species present in Brazil. A review

  • Adriana Favaretto
  • Simone M. Scheffer-Basso
  • Naylor B. Perez
Review Article
  • 66 Downloads

Abstract

Allelopathy is an important ecological mechanism in natural and managed ecosystems. Its study is critical to understand natural plant behaviors, to isolate allelochemicals with herbicide potential, and to use the allelopathic genes in transgenic studies. Poaceae is an ecologically dominant plant family and it is economically important worldwide because its chemical diversity represents an important source to discover new molecules. From this viewpoint, Brazil is an interesting place to study, encompassing 197 genera of the Poaceae family, many of them being dominant in various biomes and some being native to Brazil. Here, we review the literature describing allelopathic activities involving grasses of the Poaceae family. We evaluate the experimental conditions used in these studies, we identify the allelochemicals involved, and, finally, we assess the applicability of allelopathy. Our main findings are (1) among the 47 Brazilian species studied for their allelopathic effects, only Bothriochloa barbinodis, Bothriochloa laguroides, Paspalum notatum, and Paspalum urvillei are native to Brazil; (2) 51% of the reviewed studies prepared extracts from the leaves and used lettuce as the target plant; and (3) 64% of the papers identified allelochemicals, of which 67% were phenolic acids. This first bibliographical survey on allelopathy in Poaceae species present in Brazil shows that less than 3% of the Brazilian species have been studied, suggesting it is an incipient research subject. Since this plant family is a valuable source of unknown natural products, refining such studies should contribute to a better understanding of the ecosystem relationships. Identification and isolation of grass allelochemicals should promote environmentally safer compounds with bioherbicide properties, in sustainable agriculture.

Keywords

Allelochemicals Bioprospecting Grasses Native resources 

References

  1. Abdullah S, Gobilik J, Chong KP (2012) Preliminary phytochemical study and antimicrobial activity from various extract of Cynodon dactylon (L.) Pers. (bermuda) against selected pathogens. Int J Pharm Pharm Sci 4(5):227–230Google Scholar
  2. Abu-Romman S, Ammari T (2015) Allelopathic effect of Arundo donax, a Mediterranean invasive grass. Plant Omics J 8(4):287–291Google Scholar
  3. Ahmad W, Akbar M, Farooq U, Alia A, Khan F (2014) Allelopathic effects of aqueous extracts of Avena fatua on seed germination and seedling growth of Triticum aestivum (variety GW-273). J Environ Sci Toxicol Food Technol 8(2):38–42Google Scholar
  4. Amini R, An M, Pratley J, Azimi S (2009) Allelopathic assessment of annual ryegrass (Lolium rigidum): bioassays. Allelopath J 24:67–76Google Scholar
  5. An N, Pratley JE, Haig T (1996) Differential phytotoxicity of Vulpia species and their plant parts. Allelopath J 3(2):185–194Google Scholar
  6. An N, Pratley JE, Haig T (2001) Phytotoxicity of Vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros. J Chem Ecol 27(2):383–394Google Scholar
  7. Asghari J, Tewari JP (2007) Allelopathic potentials of eight barley cultivars on Brassica juncea (L.) Czern. and Setaria viridis (L) p. Beauv. J Agric Sci Technol 9:165–176.  https://doi.org/10.1023/A:1020853620102
  8. Bai SB, Zhou GM, Wang YX (2013) Allelopathic potential of Phyllostachys edulis on two dominant tree species of evergreen broad-leaved forest in its invasive process. Chin J Environ Sci 34(10):4066–4072Google Scholar
  9. Bartholomew OI, Maxwell E, Bitrus HJ (2013) Phytochemical compositions and in vitro antioxidant capacity of methanolic leaf extract of Axonopus compressus (P. Beauv.) Eur J Med Plant 3(2):254–265.  https://doi.org/10.9734/EJMP/2013/1686 CrossRefGoogle Scholar
  10. Bertoldi C, De Leo M, Ercoli L, Braca A (2012) Chemical profile of Festuca arundinacea extract showing allelochemical activity. Chemoecology 22:13–21.  https://doi.org/10.1007/s00049-011-0092-4 CrossRefGoogle Scholar
  11. Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agr 1:7–20Google Scholar
  12. Boldrini II, Ferreira PMA, Andrade BO, Schneider AA, Setubal RB, Trevisan R, Freitas EM (2010) Bioma Pampa diversidade florística e fisionômica. Editora Pallotti, Porto AlegreGoogle Scholar
  13. Bomediano C (2013) The role of native species as biome resistance factors on molasses grass (Melinis minutiflora Beauv.) invasion in rupestrian fields in Minas Gerais State, Brazil. Dissertation, Universidade Federal de Minas Gerais. https://hdl.handle.net/1843/BUBD-A34GXH
  14. Bostan C, Moisuc A, Radu F, Cojocariu L, Horablaga M, Sarateanu V (2010) Effect of Poa pratensis extracts on growing and development of perennial grasses seedlings. Res J Agr Sci 42:372–377Google Scholar
  15. Bostan C, Butnariu M, Butu M, Ortan A, Butu A, Rodino S, Parvu C (2013) Allelopathic effect of Festuca rubra on perennial grasses. Rom Biotechl Lett 18(2):8190–8196Google Scholar
  16. Carvalho SIC, Nascimento Júnior D, Alvarenga EM, Regazzi AJ (1993) Efeitos alelopáticos de Brachiaria brizantha cv. Marandu no estabelecimento de plantas de Stylosanthes guianensis var. vulgaris e cv. Bandeirantes Rev Bras Zootecn 22(6):930–937Google Scholar
  17. Chou CH (1989) Allelopathic research of subtropical vegetation in Taiwan. IV. Comparative phytotoxic nature of leachate from four subtropical grasses. J Chem Ecol 15(7):2149–2159.  https://doi.org/10.1007/BF01207445 CrossRefPubMedGoogle Scholar
  18. Chou CH, Lee HF (1991) Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J Chem Ecol 17(11):2267–2281.  https://doi.org/10.1007/BF00988007 CrossRefPubMedGoogle Scholar
  19. Chou CH, Young CC (1975) Phytotoxic substances in twelve subtropical grasses. J Chem Ecol 1(2):183–193.  https://doi.org/10.1007/BF00987867 CrossRefGoogle Scholar
  20. Chung IM, Ali M, Ahmad A, Lim JD, Yu CY, Kim JS (2006) Chemical constituents of rice (Oryza sativa) Hulls and their herbicidal activity against duckweed (Lemna paucicostata Hegelm 381). Phytochem Anal 17:36–45.  https://doi.org/10.1002/pca.879 CrossRefPubMedGoogle Scholar
  21. Chung IM, Ahn JK, Yun SJ (2015) Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can J Plant Sci 58:815–821Google Scholar
  22. De Almeida ARP, Rodrigues TJD, Santos JM (2000) Alelopatia de cultivares de Panicum maximum Jacq., sobre leguminosas forrageiras arbustivas e arbóreas. I - Avaliações em laboratório. Bol Ind Anim 57(2):113–127Google Scholar
  23. de Medeiros ARM (1989) Determinação de potencialidades alelopáticas em agroecossistemas. Thesis, Universidade de São PauloGoogle Scholar
  24. Duke SO (2015) Proving allelopathy in crop-weed interactions. Weed Sci 63:121–132.  https://doi.org/10.1614/WS-D-13-00130.1 CrossRefGoogle Scholar
  25. Emeterio LS, Arroyo A, Canals RM (2004) Allelopathic potential of Lolium rigidum Gaud. on the early growth of three associated pasture species. Grass Forage Sci 59:107–112.  https://doi.org/10.1111/j.1365-2494.2004.00410.x CrossRefGoogle Scholar
  26. Eussen JHH, Niemann GJ (1981) Growth inhibiting substances from leaves of Imperata cylindrica (L.) Beauv. Z Pflanz 102(3):263–266.  https://doi.org/10.1016/S0044-328X(81)80229-2 CrossRefGoogle Scholar
  27. Faria DA, Guarantini MTG (2011) Avaliação do potencial alelopático de Merostachys pluriflora um bambu nativo da Mata Atlântica. Sociedade de Ecologia do Brasil. http://www.seb-ecologia.org.br/xceb/resumos/664.pdf. Accessed 17 June 2015
  28. Fernandes LAV, Miranda DLC, Sanquetta CR (2007) Potencial alelopático de Merostachys multiramea Hackel sobre a germinação de Araucaria angustifolia (Bert.) Kuntze. Rev Acad 5(2):139–146Google Scholar
  29. Ferreira AG, Aquila MEA (2000) Alelopatia: uma área emergente da ecofisiologia. Rev Bras Fisiol Veg 12:175–204Google Scholar
  30. Ferreira AG, Aquila MEA, Jacobi US, Rizvi V (1992) Allelopathy in Brazil. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London, pp 243–250CrossRefGoogle Scholar
  31. Ghebrehiwot HM, Aremu AO, Staden JV (2014) Evaluation of the allelopathic potential of five South African mesic grassland species. Plant Growth Regul 72(2):155–162.  https://doi.org/10.1007/s10725-013-9847-y
  32. Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants: multisite action of allelochemicals. Acta Physiol 27(3):395–407.  https://doi.org/10.1007/s11738-005-0017-3 CrossRefGoogle Scholar
  33. Golpavar AR, Hadipanah A, Sepehri A, Salehi S (2015) Allelopathic effects of bermuda grass (Cynodon dactylon L. Pers.) extract on germination and seedling growth of basil (Ocimum basilicum L.) and common purslane (Portulaca oleracea L.). J Biodivers. Environ Sci 6(5):137–143Google Scholar
  34. Hagan DL, Jose S, Lin CH (2013) Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the Southeastern US. J Chem Ecol 39:312–322.  https://doi.org/10.1007/s10886-013-0241-z CrossRefPubMedGoogle Scholar
  35. Hamidi R, Mazaheri D, Rahimian H, Alizadeh HM, Ghadiri H, Zeinaly H (2006) Inhibitory effects of wild barley (Hordeum spontaneum Koch.) residues on germination and seedling growth of wheat (Triticum aestivum L.) and its own plant. BIABAN J 11:35–43Google Scholar
  36. Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecol 30(11):2181–2191.  https://doi.org/10.1023/B:JOEC.0000048782.87862.7f CrossRefGoogle Scholar
  37. Heywood VH (1978) Flowering plants of the world. Mayflower Books, New YorkGoogle Scholar
  38. Hong NH, Xuan TD, Eiji T, Khanh TD (2004) Paddy weed control by higher plants from Southeast Asia. Crop Prot 23(3):255–261.  https://doi.org/10.1016/j.cropro.2003.08.008 CrossRefGoogle Scholar
  39. Hoult AHC, Lovett JV (1993) Biologically active secondary metabolites of barley: a method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J Chem Ecol 19(10):2245–2254.  https://doi.org/10.1007/BF00979661 CrossRefPubMedGoogle Scholar
  40. Hussain F, Ahmad B, Ilahi I (2010) Allelopathic effects of Cenchrus ciliaris L. and Bothriochloa pertusa (L.) A. Camus. Pak J Bot 42(5):3587–3604Google Scholar
  41. IAS (1996) Constitution and Bylaw of IAS. IAS Newsletter, CadizGoogle Scholar
  42. Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 2017:529–539.  https://doi.org/10.1007/s00425-003-1054-z Google Scholar
  43. Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26(9):2111–2118.  https://doi.org/10.1023/A:1005516431969 CrossRefGoogle Scholar
  44. Ishimine Y, Nakama M, Matsumoto S (1987) Allelopathic potential of Paspalum urvillei STEUD., Bidens pillosa L. var. radiata SCHERFF., and Stellaria aquatica Scop., dominant weeds in sugarcane fields in the Ryukyu Islands. Weed Res 32(4):274–281Google Scholar
  45. Jung WS, Kim KH, Ahn JK, Hahn SJ, Chung IM (2004) Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli. Crop Prot 23:211–218.  https://doi.org/10.1016/j.cropro.2003.08.019 CrossRefGoogle Scholar
  46. Kannan D, Priyal SB (2015) Phytochemistry study in three selected ecotypes of Cenchrus ciliaris L. grass. Int J Multidiscip Res 1(1):56–59Google Scholar
  47. Kato-Noguchi H, Kobayashi A, Ohno O, Kimura F, Fujii Y, Suenaga K (2014) Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha. J Plant Physiol 171:525–530.  https://doi.org/10.1016/j.jplph.2013.11.010 CrossRefPubMedGoogle Scholar
  48. Khuzhaev VU (2004) Alkaloids of Arundo donax. XVIII. Nitrogenous bases in flowers of cultivars. Chem Nat Compd 40(5):516–517.  https://doi.org/10.1007/s10600-005-0025-y CrossRefGoogle Scholar
  49. Koger GH, Bryson CT (2004) Effect of cogongrass (Imperata cylindrica) extracts on germination and seedling growth of selected grass and broadleaf species. Weed Technol 18:236–242.  https://doi.org/10.1614/WT-03-022R1 CrossRefGoogle Scholar
  50. Kremer JR, Ben-Hammouda M (2009) Allelopathic plants. 19. Barley (Hordeum vulgare L). Allelopath J 24(2):225–242Google Scholar
  51. Levitt J, Lovett JV (1985) Alkaloids, antagonisms and allelopathy. Biol Agric Hortic 2(4):289–301.  https://doi.org/10.1080/01448765.1985.9754443 CrossRefGoogle Scholar
  52. Li ZH, Wang K, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15(12):8933–8952.  https://doi.org/10.3390/molecules15128933 CrossRefPubMedGoogle Scholar
  53. Llusià J, Estiarte M, Peñuelas J (1996) Terpenoids and plant communication. Butll Inst Cat Inst Nat 64:125–133Google Scholar
  54. Ma Y, Zhang M, Li Y, Shui J, Zhou Y (2014) Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. J Plant Interact 9(1):722–730.  https://doi.org/10.1080/17429145.2014.912358
  55. Macías FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348.  https://doi.org/10.1002/ps.1342 CrossRefPubMedGoogle Scholar
  56. Mahmoodzadeh H, Mahmoodzadeh M (2013) Allelopathic effects of Cynodon dactylon L. on germination and growth of Triticum aestivum. Annals Biol Res 5(1):118–123Google Scholar
  57. Mahmoodzadeh H, Mahmoodzadeh M (2014) Allelopathic effects of rhizome aqueous extract of Cynodon dactylon L. on seed germination and seedling growth of legumes, Labiatae and Poaceae. Iran. J Plant Physiol 4(3):1047–1054Google Scholar
  58. Martin LD, Smith AE (1994) Allelopathic potential of some warm-season grasses. Crop Prot 13(5):388–392.  https://doi.org/10.1016/0261-2194(94)90055-8 CrossRefGoogle Scholar
  59. Mbuthia KS (1997) Analysis of volatile phytochemical for wild non-host plant, Melinis minutiflora P. Beav., and wild host plant Pennisetum purpureum(K) sihumach of Chilo portellus (swinhoe). Dissertation, Kenyatta UniversityGoogle Scholar
  60. Mold R (2005) Testing the allelopathic effect of Festuca paniculata in Sub-Alpine Grasslands. La Station Alpine Joseph Fourier. http://www.jardinalpindulautaret.fr/sites/sajf/files/pdf/stage2005MOLD.pdf. Acessed 27 August 2015
  61. Murphy SD, Aarssen LW (1995) Allelopathic pollen extract from Phleum pratense L. reduces germination (in vitro) off pollen of sympatric species. Int J Plant Sci 156(4):425–434.  https://doi.org/10.1086/297264
  62. Nascimento EA, Terrones MGH, Morais SAL, Chang R, Andrade GA, Santos DQ, Pereira BHA (2009) Allelopathic activity of Cenchrus echinatus L. extracts on weeds and crops. Allelopath J 24(2):363–372Google Scholar
  63. Novo MCSS, Deuber R, Lago AA, Araújo RT, Santini A (2009) Efeito de extratos aquosos de estruturas de grama-seda no desenvolvimento inicial de plântulas de arroz, milho e trigo. Bragantia 68:665–672.  https://doi.org/10.1590/S0006-87052009000300013 CrossRefGoogle Scholar
  64. Ogie-Odia EA, Eseigbe D, Ilechie MN, Erhabor J, Ogbebor E (2010) Foliar epidermal and phytochemical studies of the grasses Cymbopogon citratus (Stapf.), Axonopus compressus (P. Beauv.) and Eragrostis tremula (S.W. Beauv.) in Ekpoma, Edo State, Nigeria. Sci World J 5(1):20–24CrossRefGoogle Scholar
  65. Oliveira SCC, Gualtieri SCJ, Domínguez FAM, Molinillo JMG, Montoya RV (2012) Estudo fitoquímico de folhas de Solanum lycocarpum A. St.-Hil (Solanaceae) e sua aplicação na alelopatia. Acta Bot Bras 26(3):607–618.  https://doi.org/10.1590/S0102-33062012000300010 CrossRefGoogle Scholar
  66. Parveen I, Wilson T, Donnison IS, Cookson AR, Hauck B, Threadgill MD (2013) Potential sources of high value chemicals from leaves, stems and flowers of Miscanthus sinensis ‘Goliath’ and Miscanthus sacchariflorus. Phytochemistry 92:160–167.  https://doi.org/10.1016/j.phytochem.2013.04.004 CrossRefPubMedGoogle Scholar
  67. Parvez SS, Parvez MM, Fujii Y, Gemma H (2003) Allelopathic competence of Tamarindus indica L. root involved in plant growth regulation. Plant Growth Regul 41:139–148.  https://doi.org/10.1023/A:1027387126878 CrossRefGoogle Scholar
  68. Pillar VP, Muller SC, Castilhos ZMS, Jacques AVA (2009) Campos Sulinos. Conservação e uso sustentável da biodiversidade. MMA, BrasíliaGoogle Scholar
  69. Rasmussen JA, Rice EL (1971) Allelopathic effect of Sporobolus pyramidatus on vegetational patterning. Am Midl Nat 86:309–326.  https://doi.org/10.2307/2423626 CrossRefGoogle Scholar
  70. Reigosa MJ, Sanchéz-Moreiras A, González L (1999) Ecophysiological approach in allelopathy. Crc Rev Plant Sci 18(5):577–608.  https://doi.org/10.1080/07352689991309405 CrossRefGoogle Scholar
  71. Reigosa M, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Bot Bras 27(4):629–646.  https://doi.org/10.1590/S0102-33062013000400001 CrossRefGoogle Scholar
  72. Resende PC, Pinto JC, Evangelista AR et al. (2003) Alelopatia e suas interações na formação e manejo das pastagens. UFLA. http://livraria.editora.ufla.br/upload/boletim/tecnico/boletim-tecnico-54.pdf. Accessed 13 June 2015.
  73. Ribeiro JP, Matsumoto RS, Tadao LK, Voltarelli VM, Lima MIS (2009) Efeitos alelopáticos de extratos aquosos de Crinum americanum L. Rev Bras Bot 32(1):183–188CrossRefGoogle Scholar
  74. Rice EL (1984) Allelopathy. Academic Press, New YorkGoogle Scholar
  75. Rizvi SJH, Haque H, Singh VK, Rizvi V (1992) A discipline called allelopathy. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London, pp 1–10CrossRefGoogle Scholar
  76. Rodrigues LRA, Rodrigues TJD, Reis RA (1992) Alelopatia em plantas forrageiras. UNESP/FUNEP, JaboticabalGoogle Scholar
  77. Samedani B, Juraimi AS, Rafii MY, Anuar AR, Awadz SAS, Anwar MP (2013) Allelopathic effects of litter Axonopus compressus against two weedy species and its persistence in soil. Sci World J 8:16–24.  https://doi.org/10.1155/2013/695404 Google Scholar
  78. Sánchez-Moreiras AM, Weiss OA, Reigosa-Roger MJ (2004) Allelopathic evidence in the Poaceae. Bot Rev 69(3):300–319.  https://doi.org/10.1663/0006-8101 CrossRefGoogle Scholar
  79. Santos JCF, Souza IF, Mendes ANG, Morais AR, Conceição HEO, Marinho JTS (2002) Efeito de extratos de cascas de café e de arroz na emergência e no crescimento de caruru-de-mancha. Pesqui Agropecu Bras 37:783–790.  https://doi.org/10.1590/S0100-83582001000200007 CrossRefGoogle Scholar
  80. Scognamiglio M, Fiumano V, D’Abrosca B, Pacifico S, Messere A, Esposito A, Fiorentino A (2012) Allelopathic potential of alkylphenols from Dactylis glomerata subsp. hispanica (Roth) Nyman. Phytochem Lett 5:206–210.  https://doi.org/10.1016/j.phytol.2011.12.009 CrossRefGoogle Scholar
  81. Scrivanti LR (2010) Allelopathic potential of Bothriochloa laguroides var. laguroides (DC.) Herter (Poaceae: Andropogoneae). Flora 205:302–305.  https://doi.org/10.1016/j.flora.2009.12.005 CrossRefGoogle Scholar
  82. Scrivanti LR, Anton AM, Zygadlo JA (2011) Allelopathic potential of South American Bothriochloa species (Poaceae: Andropogoneae). Allelopath J 28(2):189–200Google Scholar
  83. Shivakoti C, Ramanjaneyelu K, Ramesh A (2015) Preliminary phytochemical screening of Setaria verticillata. Indo Am J Pharm Res 5(6):2425–2429Google Scholar
  84. Shui J, An Y, Ma Y, Ichizen N (2010) Allelopathic potential of switchgrass (Panicum virgatum L.) on perennial ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.) Environ Manag 46:590–598.  https://doi.org/10.1007/s00267-010-9454-x CrossRefGoogle Scholar
  85. Slater PD, Cregan TM, Cregan PD (1996) Allelopathic effects of Danthonia richardsonii (cv. taranna) and Phalaris aquatica (cv. sirolan) on Trifolium subterraneum (cv. seaton park). In: Eleventh Australian Weeds Conference Proceedings, 1996, Weed Science Society of Victoria Inc., Melbourne, Victoria, Australia, pp 279–282Google Scholar
  86. Soltys D, Krasuska U, Bogatek R, Gniadowska A (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price AJ, Kelton J (eds) Herbicides current research and case studies in use. InTech, WarsawGoogle Scholar
  87. Souza Filho APS (1995) Potencialidades alelopáticas envolvendo gramíneas e leguminosas forrageiras e plantas invasoras de pastagens. Thesis, Universidade Estadual de São PauloGoogle Scholar
  88. Souza Filho APS, Alves SM (1998) Alelopatia em ecossistema de pastagem cultivada. Embrapa-CPATU, BelémGoogle Scholar
  89. Souza Filho APS, Rodrigues LRA, Rodrigues TJD (1997) Inibição da germinação e alongamento da radícula de invasoras de pastagens pelos extratos aquosos de gramíneas forrageiras tropicais. Past Trop 19(1):45–50Google Scholar
  90. Souza Filho APS, Pereira AAG, Bayma JC (2005) Aleloquímico produzido pela gramínea forrageira Brachiaria humidicola. Planta Daninha 23(1):25–32.  https://doi.org/10.1590/S0100-83582005000100004 CrossRefGoogle Scholar
  91. Taiz L, Zeiger E (2013) Fisiologia Vegetal. ARTMED, Porto AlegreGoogle Scholar
  92. Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2011) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 169:185–193.  https://doi.org/10.1016/j.anifeedsci.2011.07.004 CrossRefGoogle Scholar
  93. Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tantiado RG, Saylo MC (2012) Allelopathic potential of selected grasses (family Poaceae) on the germination of lettuce seeds (Lactuca sativa). Int J Bio-Sci Bio-Technol 4(2):27–34Google Scholar
  95. Torres R, Jose C, Shirasuna R, Grombone-Guaratini MD (2014) Phenolic acids and C-glycoside flavonoids in Merostachys riedeliana (bamboo). Planta Med 80:33–34.  https://doi.org/10.1055/s-0034-1394976 Google Scholar
  96. Trezzi MM (2002) Avaliação do potencial alelopático de genótipos de sorgo. Thesis, Universidade Federal do Rio Grande do SulGoogle Scholar
  97. Wardle DA (1987) Allelopathy in the New Zealand grassland/pasture ecosystem. N Z J Exp Agric 15:243–255.  https://doi.org/10.1080/03015521.1987.10425567 Google Scholar
  98. Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389.  https://doi.org/10.1080/713610861 CrossRefGoogle Scholar
  99. Xuan TD, Toyama T, Fukuta M, Khanh TD, Tawata S (2009) Chemical interaction in the invasiveness of cogon grass (Imperata cylindrica (L.) Beauv.) J Agric Food Chem 57:9448–9453.  https://doi.org/10.1021/jf902310j CrossRefPubMedGoogle Scholar
  100. Yamagushi MQ, Gusman GS, Vestena V (2011) Efeito alelopático de extratos aquosos de Eucalyptus globulus Labill. e de Casearia sylvestris Sw. sobre espécies cultivadas. Semina 32(4):1361–1374.  https://doi.org/10.5433/1679-0359 Google Scholar
  101. Yamamoto Y, Fugii Y (1997) Exudation of allelopathic compound from plant roots of sweet vernalgrass (Anthoxanthum odoratum). J Weed Sci Technol 42(1):31–35CrossRefGoogle Scholar
  102. Zain NMD, Yew OH, Sahid I, Seng CT (2013) Potential of napier grass (Pennisetum purpureum) extracts as a natural herbicide. Pak J Bot 45(6):2095–2100Google Scholar
  103. Zheng H, He CQ, Xu QY et al. (2011) Interference of allelopathy about Spartina alterniflora to Scirpus mariqueter by effects of activated carbon on soil. Procedia Environ Sci 10:1835–1840Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Adriana Favaretto
    • 1
  • Simone M. Scheffer-Basso
    • 1
  • Naylor B. Perez
    • 2
  1. 1.Universidade de Passo FundoPasso FundoBrazil
  2. 2.Embrapa Pecuária SulBagéBrazil

Personalised recommendations