Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350. doi:10.1007/s11104-014-2063-3
CAS
Article
Google Scholar
Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. doi:10.3109/07388550903524243
CAS
PubMed
Article
Google Scholar
Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530. doi:10.1104/pp.110.161349
CAS
PubMed
PubMed Central
Article
Google Scholar
Al-Karaki GN (2012) Phenological development-yield relationships in durum wheat cultivars under late-season high-temperature stress in a semiarid environment. International Scholarly Res Network 2012:1–7. doi:10.5402/2012/456856
Google Scholar
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550. doi:10.1007/s11120-008-9331-0
CAS
PubMed
Article
Google Scholar
Almeselmani M, Deshmukh PS, Sairam RK (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defense enzymes. Acta Agron Hungar 57:1–14
CAS
Article
Google Scholar
Almeselmani M, Deshmukh PS, Chinnusamy V (2012) Effect of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32
Google Scholar
Altenbach SB (2012) New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. J Cereal Sci 56:39–50. doi:10.1016/j.jcs.2011.12.012
Article
Google Scholar
Anderson M, Habiger J (2012) Characterization and identification of productivity-associated Rhizobacteria in wheat. Appl Environ Microbiol 78:4434–4446. doi:10.1128/AEM.07466-11
CAS
PubMed
PubMed Central
Article
Google Scholar
Anjum F, Wahid A, Javed F, Arshad M (2008) Influence of foliar applied thiourea on flag leaf gas exchange and yield parameters of bread wheat (Triticum aestivum) cultivars under salinity and heat stresses. Int J Agri Biol 10:619–626
CAS
Google Scholar
Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. doi:10.1007/s11099-013-0021-6
CAS
Article
Google Scholar
Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW et al (2014) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147. doi:10.1038/nclimate2470
Article
Google Scholar
Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Chang Biol 17:997–1012. doi:10.1111/j.1365-2486.2010.02262.x
Article
Google Scholar
Asseng S, Royce R, Cammarano D (2013) Temperature routines in wheat, workshop modeling wheat response to high temperature. Proceedings, Vol. VIII, p. 128. CIMMYT, Mexico, DF (Mexico). Jun 19–21
Asthir B (2015a) Mechanisms of heat tolerance in crop plants. Biologia Plant 59:620–628. doi:10.1007/s10535-015-0539-5
CAS
Article
Google Scholar
Asthir B (2015b) Protective mechanisms of heat tolerance in crop plants. J Plant Interactions 10:202–210. doi:10.1080/17429145.2015.1067726
CAS
Article
Google Scholar
Asthir B, Bala S, Bains NS (2013) Metabolic profiling of grain carbon and nitrogen in wheat as influenced by high temperature. Cereal Res Commun 41:230–242. doi:10.1556/CRC.2012.0036
CAS
Article
Google Scholar
Asthir B, Bhatia S (2014) In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress. J Food Sci Tech 51:118–123. doi:10.1007/s13197-011-0458-1
CAS
Article
Google Scholar
Asthir B, Koundal A, Bains NS (2012) Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biol Plant 56:757–761. doi:10.1007/s10535-012-0209-1
CAS
Article
Google Scholar
Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. doi:10.1093/jxb/ers100
CAS
PubMed
Article
Google Scholar
Bahar B, Yildirim M, Yucel C (2011) Heat and drought resistance criteria in spring bread wheat (Triticum aestivum L.): Morpho-physiological parameters for heat tolerance. Sci Res Essays 6:2212–2220. doi:10.5897/SRE11.418
Article
Google Scholar
Balla K, Bedo Z, Veisz O (2007) Heat stress induced changes in the activity of antioxidant enzymes in wheat. Cereal Res Commun 35:197–200
CAS
Article
Google Scholar
Balla K, Karsai I, Bencze S, Veisz O (2012) Germination ability and seedling vigour in the progeny of heat-stressed wheat plants. J Acta Agron Hung 60:299–308. doi:10.1556/AAgr.60.2012.4.1
Article
Google Scholar
Bennani S, Nsarellah N, Birouk A, Ouabbou H, Tadesse W (2016) Effective selection criteria for screening drought tolerant and high yielding bread wheat genotypes. Universal J Agril Res 4:134–142. doi:10.13189/ujar.2016.040404
Article
Google Scholar
Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water limited environments. Theor Appl Genet 125:255–271. doi:10.1007/s00122-012-1831-9
PubMed
Article
Google Scholar
Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production. CABI, Oxfordshire, pp 115–138
Chapter
Google Scholar
Castro M, Peterson CJ, Rizza MD, Dellavalle PD, V’azquez D, Ibanez V, Ross A (2007) Influence of heat stress on wheat grain characteristics and protein molecular weight distribution. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environment. Springer, Dordrecht, pp 365–371
Caverzan A, Casassola A, Brammer SA (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6. doi:10.1590/1678-4685-GMB-2015-010
PubMed
PubMed Central
Article
Google Scholar
Chakraborty D, Nagarajan S, Aggarwal P, Gupta VK, Tomar RK, Garg RN, Sahoo RN, Sarkar A, Chopra UK, Sarma KSS, Kalra N (2008) Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric Water Manag 95:1323–1334. doi:10.1016/j.agwat.2008.06.001
Article
Google Scholar
Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. doi:10.1038/nclimate2153
Article
Google Scholar
Chapman SC, Chakraborty S, Dreccer MF, Howden SC (2012) Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci 63:251–268. doi:10.1071/CP11303
Article
Google Scholar
Chauhan H, Khurana N, Tyagi A, Khurana J, Khurana P (2011) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum) and their regulation at various stages of development. Plant Mol Biol 75:35–51. doi:10.1007/s11103-010-9702-8
CAS
PubMed
Article
Google Scholar
Chen SY, Zhang XY, Pei D, Sun HY, Chen SL (2007) Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China plain. Ann Appl Biol 150:261–268. doi:10.1111/j.1744-7348.2007.00144.x
Article
Google Scholar
Ciuca M, Petcu E (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.) Romanian Agric Res 26:21–24
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakotti G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trosch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Palma FD, Phillips A, Millar AH, Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD (2016) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:1–12http://www.genome.org/cgi/doi/10.1101/gr.217117.116
Google Scholar
Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–133. doi:10.1104/pp.106.090092
CAS
PubMed
PubMed Central
Article
Google Scholar
Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718. doi:10.1104/pp.112.207753
CAS
PubMed
PubMed Central
Article
Google Scholar
De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found Sri 39:281–302. doi:10.4038/jnsfsr.v39i4.3879
Google Scholar
Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:1–13. doi:10.1088/1748-9326/9/3/034011
Article
Google Scholar
Dhanda SS, Munjal R (2012) Heat tolerance in relation to acquired thermotolerance for membrane lipids in bread wheat. Field Crops Res 135:30–37. doi:10.1016/j.fcr.2012.06.009
Article
Google Scholar
Dias AS, Bagulho AS, Lidon FC (2008) Ultrastructue and biochemical traits of bread and durum wheat grains under heat stress. Brazz J Plant Physiol 20:323–333. doi:10.1590/S1677-04202008000400008
Article
Google Scholar
Dias AS, Lidon FC (2009a) Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. J Agron Crop Sci 195:137–147. doi:10.1111/j.1439-037X.2008.00347.x
Article
Google Scholar
Dias AS, Lidon FC (2009b) Heat stress in Triticum: kinetics of Cu and Zn accumulation. Brazilian J Plant Physiol 21:135–142
Dias AS, Lidon FC (2010) Bread and durum wheat tolerance under heat stress: a synoptical overview. Emir J Food Agric 22:412–436. doi:10.9755/ejfa.v22i6.4660
Article
Google Scholar
Dias AS, Lidon FC, Ramalho JC (2009a) IV. Heat stress in Triticum: kinetics of Fe and Mg accumulation. Brazilian J Plant Physiol 21:153–164. doi:10.1590/S1677-04202009000200008
Dias AS, Lidon FC, Ramalho JC (2009b) I. Heat stress in Triticum: kinetics of Ca and Mg accumulation. Brazilian J Plant Physiol 21:123–134. doi:10.1590/S1677-04202009000200005
Essemine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572. doi:10.3923/jbs.2010.565.572
CAS
Article
Google Scholar
Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507. doi:10.1080/07352689.2011.615687
Article
Google Scholar
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021
Article
Google Scholar
Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci 200:143–155. doi:10.1111/jac.12045
CAS
Article
Google Scholar
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature. doi:10.1038/nature10452
Fontana G, Toreti A, Ceglar A, De Sanctis G (2015) Early heat waves over Italy and their impacts on durum wheat yields. Nat. Hazards Earth Syst. Sci 15:1631–1637. doi:10.5194/nhess-15-1631-2015
Fu J, Momclovic I, Prasad V (2012) Molecular bases and improvement of heat tolerance in crop plants. In: Josipovic S, Ludwig E (eds) Heat stress: causes. Prevention and Treatments. Nova Science, USA, pp 185–214
Google Scholar
Glab T, Kulig B (2008) Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Res 99:169–178
Article
Google Scholar
Gourdji S, Mathews KL, Reynolds M, Crossa J, Lobell DB (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc Biol Sci 280:1471–2954. doi:10.1098/rspb.2012.2190
Google Scholar
Grant RF, Kimball BA, Conley MM, White JW, Wall GW, Ottman MJ (2011) Controlled warming effects on wheat growth and yield: field measurements and modeling. Agron J 103(6):1742–1754. doi:10.2134/agronj2011.0158
Article
Google Scholar
Gupta NK, Agarwal S, Agarwal VP, Nathawat NS, Gupta S, Singh G (2013a) Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol Plant 35:1837–1842. doi:10.1007/s11738-013-1221-1
CAS
Article
Google Scholar
Gupta K, Dey A, Gupta B (2013b) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036. doi:10.1007/s11738-013-1239-4
CAS
Article
Google Scholar
Hakim MA, Hossain A, Jaime A, da Silva T, Zvolinsky VP, Khan MM (2012) Yield, protein and starch content of twenty wheat (Triticum aestivum L.) genotypes exposed to high temperature under late sowing conditions. J Sci Res 4:477–489. doi:10.3329/jsr.v4i2.8679
CAS
Article
Google Scholar
Hampton JG, Boelt B, Rolston MP, Chastain TG (2013) Effects of elevated CO2 and temperature on seed quality. J Agric Sci 151:154–162. doi:10.1017/S0021859612000263
CAS
PubMed
Article
Google Scholar
Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:14726–14727. doi:10.1073/pnas.1205276109
CAS
Article
Google Scholar
Haque MS, Kjaer KH, Rosenqvist E, Sharma DK, Ottosen CO (2014) Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environ Exp Bot 99:1–8. doi:10.1016/j.envexpbot.2013.10.017
CAS
Article
Google Scholar
Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684. doi:10.3390/ijms14059643
PubMed
PubMed Central
Article
CAS
Google Scholar
Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. J Plant Sci 172:1113–1123. doi:10.1016/j.plantsci.2007.03.004
CAS
Article
Google Scholar
Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36. doi:10.1016/j.tplants.2008.11.001
CAS
PubMed
Article
Google Scholar
Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12. doi:10.2135/crop-sci2008.08.0512
CAS
Article
Google Scholar
Hemantaranjan A, Nishant Bhanu A, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and Thermotolerance. Adv plants Agric Res 1:00012. doi:10.15406/apar.2014.01.00012
Google Scholar
Hossain A, Sarker MAZ, Saifuzzaman M, Teixeira da Silva JA, Lozovskaya MV, Akhter MM (2013) Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int J Plant Production 7:615–636
Google Scholar
Hossain A, Teixeira de Silva JA (2012) Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Not Sci Biol 4:97–109. doi:10.15835/nsb437879
Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63:3455–3465. doi:10.1093/jxb/ers003
CAS
PubMed
Article
Google Scholar
Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci 49:12–23. doi:10.1016/j.jcs.2008.06.014
CAS
Article
Google Scholar
Hussain S, Jamil M, Napar AA, Rahman R, Bano A, Afzal F, Kazi AG, Mujeeb-Kazi A (2016) Heat stress in wheat and interdisciplinary approaches for yield maximization. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress, John Wiley & Sons, pp161–182
IPCC (Intergovernmental Panel on Climate Change) (2014) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Google Scholar
Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah MA (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Tech 5:251–259. doi:10.4172/2329-8863.1000251
Article
Google Scholar
Iwaia M, Yokonoa M, Inadab N, Minagawa J (2010) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci U S A 107:2337–2342. doi:10.1073/pnas.0908808107
Article
Google Scholar
Johkan M, Oda M, Maruo T, Shinohara Y (2011) Crop production and global warming. In: Casalegno S (ed) Global warming impacts-case studies on the economy, human health, and on urban and natural environments. Rijeka, Croatia, pp 139–152
Joshi NL, Kar A (2009) Contingency crop planning for dry land areas in relation to climate change. Indian J Agron 54(2):237–243
Google Scholar
Kajla M, Yadav VK, Chhokar RS, Sharma RK (2015) Management practices to mitigate the impact of high temperature on wheat. J Wheat Res 7:1–12
Google Scholar
Kaur V, Behl RK (2010) Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre- and post-anthesis stages. Cereal Res Commun 38:514–520. doi:10.1556/crc.38.2010.4.8
Article
Google Scholar
Kaushal N, Bhandari K, Siddique KHM, Nayyar H (2016) Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2:1134380
Google Scholar
Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA, El-Khawas SA, Abd El-Monem AA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3:1517–1526
CAS
Google Scholar
Khan, AA, Kabir MR (2014) Evaluation of spring wheat genotypes (Triticum aestivum L.) for wheat stress tolerance using different stress tolerance indices Cercetari Agronomice in Moldova, XLVII: 49–63
Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481. doi:10.1007/s00709-011-0308-z
CAS
PubMed
Article
Google Scholar
Khichar ML, Niwas R (2007) Thermal effect on growth and yield of wheat under different sowing environments and planting systems. Indian J Agric Res 41:92–96
Google Scholar
Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322. doi:10.1016/j.jprot.2011.02.006
Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. doi:10.1093/jxb/err460
CAS
PubMed
PubMed Central
Article
Google Scholar
Kumar S, Singh R, Nayyar H (2013b) α-tocopherol application modulates the response of wheat (Triticum aestivum l.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J Plant Growth Regul 32:307–314. doi:10.1007/s00344-012-9299-z
CAS
Article
Google Scholar
Kumar RR, Sharma SK, Goswami S, Singh GP, Singh R, Singh K, Pathak H, Rai RD (2013a) Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.) Indian J Biochem Biophys 50:126–138
CAS
PubMed
Google Scholar
Kumar S, Singh R, Grover M, Singh AK (2012) Terminal heat-an emerging problem for wheat production. Biotechnol Today 2:7–9
Google Scholar
Kumar U, Joshi AK, Kumari M, Paliwal R, Kumar S, Roder MS (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ x ‘Sonalika’ population. Euphytica 174:437–445. doi:10.1007/s10681-010-0155-6
Article
Google Scholar
Kumari M, Pudake RN, Singh VP, Joshi AK (2013) Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.) Euphytica 190:87–97. doi:10.1007/s10681-012-0780-3
Article
Google Scholar
Li YF, Wu Y, Hernandez-Espinosa N, Pena RJ (2013) Heat and drought stress on durum wheat: responses of genotypes, yield, and quality parameters. J Cereal Sci 57:398–404. doi:10.1016/j.jcs.2013.01.005
Article
Google Scholar
Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477. doi:10.2478/intag-2013-0017
Article
Google Scholar
Liu P, Guo W, Jiang Z, Pu H, Feng C, Zhu X, Peng Y, Kuang A, Little CR (2011) Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.) J Agril Sci 149:159–169. doi:10.1017/S0021859610001024
CAS
Article
Google Scholar
Lizana XC, Calderini DF (2013) Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile. J Agril Sci 151:209–221. doi:10.1017/S0021859612000639
Article
Google Scholar
Lobell DB, Bonfils CJ, Kueppers LM, Snyder MA (2008) Irrigation cooling effect on temperature and heat index extremes. Geophys Res Lett 35:L09705. doi:10.1029/2008GL034145
Article
Google Scholar
Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. doi:10.1104/pp.112.208298
CAS
PubMed
PubMed Central
Article
Google Scholar
Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798. doi:10.1093/jxb/ers071
CAS
PubMed
PubMed Central
Article
Google Scholar
Lukac M, Gooding MJ, Griffiths S, Jones HE (2011) Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann Bot 109:843–850. doi:10.1093/aob/mcr308
PubMed
PubMed Central
Article
Google Scholar
Martinez-Ballesta MC, Lopez-Perez L, Muries B, Munoz-Azcarate O, Carvajal M (2009) Climate change and plant water balance: the role of aquaporins - a review. In: Lichtfouse E (ed) Climate change, intercropping, Pest control and beneficial microorganisms. Springer, Netherlands, pp 71–89. doi:10.1007/978-90-481-2716-05
Chapter
Google Scholar
Marutani Y, Yamauchi YKY, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761. doi:10.1007/s00425-012-1647-5
CAS
PubMed
Article
Google Scholar
Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:23–436. doi:10.1007/s10681-010-0151-x
Article
Google Scholar
Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B: Biol 137:116–126
CAS
Article
Google Scholar
Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6. doi:10.1111/j.1438-8677.2009.00319.x
CAS
PubMed
Article
Google Scholar
McClung CR, Davis SJ (2010) Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol 20:1086–1092. doi:10.1016/j.cub.2010.10.035
Article
CAS
Google Scholar
Mengutay M, Ceylan Y, Kutman UB, Cakmak I (2013) Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 368:57–72. doi:10.1007/s11104-013-1761-6
CAS
Article
Google Scholar
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid, systemic signaling in response to diverse stimuli. Sci Signal 2:1–10. doi:10.1126/scisignal.2000448
Article
Google Scholar
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Goller M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. doi:10.1016/j.tplants.2011.03.007
CAS
PubMed
Article
Google Scholar
Mohammadi M, Karimizadeh RA, Naghavi MR (2009) Selection of bread wheat genotypes against heat and drought tolerance on the base of chlorophyll content and stem reserves. J Agric Soc Sci 5:119–122
Google Scholar
Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukaru VSP, Kalappanavarg IK, Mishra VK, Hussain M, Gautam NR, Uddin J, Barma NCD, Hakim A, Joshi AK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in south Asia. Field Crops Res 151:19–26. doi:10.1016/j.fcr.2013.06.015
Article
Google Scholar
Mueller B, Hauser M, Iles C, Rimi RH, Zwiers FW, Wan H (2015) Lengthening of the growing season in wheat and maize producing regions. Weather Clim Extrem 9:47–56. doi:10.1016/j.wace.2015.04.001
Article
Google Scholar
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421. doi:10.1016/j.bbabio.2006.11.019
CAS
PubMed
Article
Google Scholar
Nagar S, Singh VP, Arora A, Dhakar R, Ramakrishnan S (2015) Assessment of terminal heat tolerance ability of wheat genotypes based on physiological traits using multivariate analysis. Acta Physiol Plant 37:257. doi:10.1007/s11738-015-2017-2
Article
CAS
Google Scholar
Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2:51–56
Google Scholar
Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230. doi:10.1007/s11104-009-0247-z
CAS
Article
Google Scholar
Nawaz A, Farooq M, Cheema SA, Wahid A (2013) Differential response of wheat cultivars to terminal heat stress. Int J Agric Biol 15:1354–1358
Google Scholar
Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosys Environ 126:46–58. doi:10.1016/j.agee.2008.01.019
Article
Google Scholar
Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M, Higashitani A (2011) Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ 34:284–290. doi:10.1111/j.1365-3040.2010.02242.x
CAS
PubMed
Article
Google Scholar
Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.) Theor Appl Genet 125:561–575. doi:10.1007/s00122-012-1853-3
PubMed
Article
Google Scholar
Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467. doi:10.1093/jxb/erq304
CAS
PubMed
Article
Google Scholar
Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374. doi:10.1007/s11104-010-0532-x
CAS
Article
Google Scholar
Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas J-J, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. doi:10.1007/s00122-010-1351-4
PubMed
PubMed Central
Article
Google Scholar
Pradhan GP, Prasad PVV (2015) Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One 10:e0116620. doi:10.1371/journal.pone.0116620
PubMed
PubMed Central
Article
CAS
Google Scholar
Prasad PVV, Djanaguiraman M (2014) Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct Plant Biol 41:1261–1269. doi:10.1071/FP14061
CAS
Article
Google Scholar
Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK (2008a) Impact of night time temperature on physiology and growth of spring wheat. Crop Sci 48:2372–2380. doi:10.2135/cropsci2007.12.0717
Article
Google Scholar
Prasad PVV, Staggenborg SA, Ristic Z (2008b) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LH, Saseendran SA (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. ASA, CSSA, Madison, pp 301–355
Google Scholar
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi:10.1007/s11104-008-9568-6
CAS
Article
Google Scholar
Radhika, Thind SK (2014) Photosynthetic functioning as a selection criteria for maximum yield potential in some wheat genotypes under late planting heat stress conditions. Int J Sci Res Manag 2:974–982
Google Scholar
Rahman MA, Chikushi J, Yoshida S, Karim AJMS (2009) Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh J Agric Res 34:361–372. doi:10.3329/bjar.v34i3.3961
Google Scholar
Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42. doi:10.1104/pp.110.168559
CAS
PubMed
Article
Google Scholar
Rangan P, Subramani R, Kumar R, Singh AK, Singh R (2014) Recent advances in polyamine metabolism and abiotic stress tolerance. BioMed Res Int 2014:239621, 9 pages. doi:10.1155/2014/239621
PubMed
PubMed Central
Article
CAS
Google Scholar
Ratnakumar P, Khan MIR, Minhas PS, Farooq MA, Sultana R, Per TS, Deokate PP, Khan NA, Singh Y, Rane J (2016) Can plant bio-regulators minimize crop productivity losses caused by drought, salinity and heat stress? An integrated review. J Appl Bot Food Qual 89:113–125. doi:10.5073/JABFQ.2016.089.014
Google Scholar
Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102. doi:10.1016/j.eja.2009.06.003
Article
Google Scholar
Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171. doi:10.1016/j.pbi.2016.04.005
PubMed
Article
Google Scholar
Ristic Z, Bukovnik U, Momcilovic I, Fu J, Prasad PVV (2008) Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J Plant Physiol 165:192–202. doi:10.1016/j.jplph.2007.03.003
CAS
PubMed
Article
Google Scholar
Ristic Z, Bukovnik U, Prasad PVV (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci 47:2067–2073. doi:10.2135/cropsci2006.10.0674
CAS
Article
Google Scholar
Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232. doi:10.1016/j.envexpbot.2010.05.011
Article
Google Scholar
Sareen S, Tyagi BS, Tiwari V, Sharma I (2012) Response estimation of wheat synthetic lines to terminal heat stress using stress indices. J Agric Sci 4:97–104. doi:10.5539/jas.v4n10p97
Google Scholar
Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.) Ekologija 56:26–33. doi:10.2478/v10055-010-0004-x
CAS
Article
Google Scholar
Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6:343–350. doi:10.1098/rsif.2008.0285
PubMed
Article
Google Scholar
Sharma A, Rawat RS, Verma JS, Jaiswal JP (2013) Correlation and heat susceptibility index analysis for terminal heat tolerance in bread wheat. J Central Eur Agri 14:57–66. doi:10.5513/JCEA01/14.2.1233
Article
Google Scholar
Sharma I, Tyagi BS, Singh G, Venkatesh K, Gupta OP (2015) Enhancing wheat production- a global perspective. Indian J Agril Sci 85:3–13
Google Scholar
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage and antioxidative defence mechanisms in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037
Article
CAS
Google Scholar
Sharma RC, Tiwari AK, Ortiz-Ferrara G (2008) Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under heat stress. Plant Breed 127:241–248. doi:10.1111/j.1439-0523.2007.01460.x
Article
Google Scholar
Sharma-Natu P, Sumesh KV, Ghildiyal MC (2010) Heat shock protein in developing grains in relation to Thermotolerance for grain growth in wheat. J Agron Crop Sci 196:76–80. doi:10.1111/j.1439-037X.2009.00390.x
CAS
Article
Google Scholar
Shewry PR (2009) Wheat. J Exper Bot 60:1537–1553. doi:10.1093/jxb/erp058
CAS
Article
Google Scholar
Sikder S, Paul NK (2010) Effects of post-anthesis heat stress on stem reserves mobilization, canopy temperature depression and floret sterility of wheat cultivars. Bangladesh J Bot 39:51–55. doi:10.3329/bjb.v39i1.5526
Article
Google Scholar
Singh A, Singh D, Gill BS et al (2011a) Planting time, methods, and practices to reduce the deleterious effects of high temperature on wheat. In: the proceedings of international conference on preparing agriculture for climate change. Punjab Agricultural University, Ludhiana, pp 338–339 February, 6-8
Google Scholar
Singh A, Singh D, Kang JS, Aggarwal N (2011b) Management practices to mitigate the impact of high temperature on wheat: a review. IIOABJ 2:11–22
Google Scholar
Song WF, Zhao LJ, Zhang XM, Zhang YM, Li JL, Zhang LL, Song QJ, Zhao HB, Zhang YB, Zhang CL, Xin WL, Sun LF, Xiao ZM (2015) Effect of timing of heat stress during grain filling in two wheat varieties under moderate and very high temperature. Indian. J Genet 75:121–124. doi:10.5958/0975–6906.2015.00018.8
Google Scholar
Sramkova Z, Gregova E, Sturdik E (2009) Chemical composition and nutritional quality of wheat grain. Acta Chim Slov 2:115–138
Google Scholar
Sumesh KV, Sharma-Natu P, Ghildiyal MC (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol Plant 52:749–753. doi:10.1007/s10535-008-0145-x
CAS
Article
Google Scholar
Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270. doi:10.1111/j.1365-3040.2011.02336.x
CAS
PubMed
Article
Google Scholar
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699
CAS
PubMed
Article
Google Scholar
Talukder ASMHM, McDonald GK, Gill GS (2013) Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crop Res 47:1–11
Article
Google Scholar
Talukder SK, Babar MA, Vijaylakshmi K, Poland J, Prasad PVV, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.) BMC Genet 15:97. doi:10.1186/s12863-014-0097-4
PubMed
PubMed Central
Article
Google Scholar
Tang Y, Xiaoli W, Chaosu L, Chun W, Xiaoling M, Gang H (2013) Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Product Sci 16:365–373
CAS
Article
Google Scholar
Teixeira EI, Fischer G, Velthuizen HV, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215. doi:10.1016/j.agrformet.2011.09.002
Article
Google Scholar
Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265. doi:10.2135/cropsci2008.02.0082
Article
Google Scholar
Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS (2016) Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospect. Agric Ecosyst Environ 216:356–373. doi:10.1016/j.agee.2015.09.034
Article
Google Scholar
Ugarte C, Calderini DF, Slafer GA (2007) Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Res 100:240–248. doi:10.1016/j.fcr.2006.07.010
Article
Google Scholar
Upreti KK, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. In: Rao NKS, Shivashankara KS, Laxman RH (eds.), Abiotic stress physiology of horticultural crops, pp 19-46. doi:10.1007/978-81-322-2725-02
Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175. doi:10.1007/s11032-009-9366-8
CAS
Article
Google Scholar
Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. doi:10.3389/fpls.2016.00067
PubMed
PubMed Central
Google Scholar
Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W (2011) Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593. doi:10.1016/j.jplph.2010.09.016
CAS
PubMed
Article
Google Scholar
Wang X, Cai J, Liu F, Dai T, Cao W, Wollenweber B, Jiang D (2014) Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physio Biochem 74:185–192. doi:10.1016/j.plaphy.2013.11.014
CAS
Article
Google Scholar
Wang X, Cai J, Liu F, Jin M, Yu H, Jiang D, Wollenweber B, Dai T, Cao W (2012) Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. J Cereal Sci 55:331–336. doi:10.1016/j.jcs.2012.01.004
CAS
Article
Google Scholar
Waraich EA, Ahmad R, Ashraf MY, Saifullah AM (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand, Section B Plant Soil Sci 61:291–304. doi:10.1080/09064710.2010.491954
CAS
Google Scholar
Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244. doi:10.4067/S0718-95162012000200003
Article
Google Scholar
Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513. doi:10.1126/science.1239402
CAS
PubMed
Article
Google Scholar
Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608. doi:10.1007/s11120-008-9372-4
CAS
PubMed
Article
Google Scholar
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004
CAS
PubMed
Article
Google Scholar
Yin XY, Guo W, Spiertz JH (2009) A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes. Field Crops Res 114:119–126. doi:10.1016/j.fcr.2009.07.013
Article
Google Scholar
Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C, Wang E, Liu J, Nielsen DC (2014) Year patterns of climate impact on wheat yields. Int J Climatol 34:518–528. doi:10.1002/joc.3704
Article
Google Scholar
Zhao H, Dai TB, Jing Q, Jiang D, Cao WX (2007) Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul 51:149–158. doi:10.1007/s10725-006-9157-8
CAS
Article
Google Scholar
Zheng B, Chenu K, Dreccer MF, Chapman SC (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob Chang Biol 18:2899–2914. doi:10.1111/j.1365-2486.2012.02724.x
PubMed
Article
Google Scholar