Ecosystem services in orchards. A review

  • Constance Demestihas
  • Daniel Plénet
  • Michel Génard
  • Christiane Raynal
  • Françoise Lescourret
Review Article

Abstract

Arboriculture must maintain acceptable fruit production levels while preserving natural resources. This duality can be analyzed with the concept of ecosystem service. We reviewed the literature on orchards to explain how ecological functions modified by agricultural practices provide six ecosystem services - fruit production, climate regulation, soil nitrogen availability, water regulation, pest and disease control, and pollination - and which indicators could describe them. The major points are, first, that orchards have a high potential of multiple services. They can sequester from 2.4 to 12.5 t C/ha/year. Their perennial character and multi-strata habitat, as well as the opportunity of creating diversified hedgerows and cover crops in alleys, may contribute to a high level of biodiversity and related services. Second, every service depends on many functions. Fruit yield, which could reach up to 140 t/ha in apple orchards, is increased by light interception, carbon allocation, and nitrogen and water uptake. Third, agricultural practices in orchards have a strong impact on ecosystem functions and, consequently, on ecosystem services. Overfertilization enhances nitrogen leaching, which reduces soil nitrogen availability for the plant and deteriorates the quality of drained water. Groundcover increases humification and reduces denitrification and runoff, thus enhancing soil nitrogen availability and water regulation. It also enhances biotic interactions responsible for pest control and pollination. Pruning may increase fruit quality trough a better carbon allocation but decreases pest control by fostering the dynamics of aphids.

To study multiple ecosystem services in orchards, we suggest using models capable of simulating service profiles and their variation according to management scenarios. We then refer to the available literature to show that conflicts between provisioning and regulating services can be mitigated by agricultural practices. Improved knowledge of soil processes and carbon balance as well as new models that address multiple services are necessary to foster research on ecosystem service relationships in orchards.

Keywords

Agricultural management Fruit production Climate regulation Soil nitrogen availability Water regulation Pest and disease control Pollination Indicator 

Notes

Acknowledgements

This study was funded by an industrial training agreement through a CIFRE research fellowship from the CTIFL (Centre Technique Interprofessionnel des Fruits et Légumes) and the ANRT (Association Nationale de la Recherche et de la Technologie) on behalf of the French Ministry of Higher Education and Research.

References

  1. Alaphilippe A, Simon S, Brun L, Hayer F, Gaillard G (2013) Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron Sustain Dev 33:581–592. doi: 10.1007/s13593-012-0124-7 CrossRefGoogle Scholar
  2. Alberti A, Vieira RG, Drilleau JF, Wosiacki G, Nogueira A (2011) Apple wine processing with different nitrogen contents. Brazilian Arch Biol Technol 54:551–558. doi: 10.1590/S1516-89132011000300017 CrossRefGoogle Scholar
  3. Alsina MM, Fanton-Borges AC, Smart DR (2013) Spatiotemporal variation of event related N 2 O and CH 4 emissions during fertigation in a California almond orchard. Ecosphere 4:art1. doi: 10.1890/ES12-00236.1
  4. Andersen L, Kühn BF, Bertelsen M, Bruus M, Larsen SE, Strandberg M (2013) Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity. Agric Ecosyst Environ 172:1–5. doi: 10.1016/j.agee.2013.04.004 CrossRefGoogle Scholar
  5. Antle J, Capalbo S (2002) Agriculture as a managed ecosystem: Policy implications. J Agric Resour Econ 27:1–15CrossRefGoogle Scholar
  6. Atkinson C, Policarpo M, Webster A, Kuden A (1998) Drought tolerance of apple rootstocks: production and partitioning of dry matter. Plant Soil 206:223–235. doi: 10.1023/A:1004415817237 CrossRefGoogle Scholar
  7. Atucha A, Merwin I, Brown M, Gardiazabal F, Mena F, Adriazola C, Lehmann J (2013) Soil erosion, runoff and nutrient losses in an avocado (Persea americana mill) hillside orchard under different groundcover management systems. Plant Soil 368:393–406. doi: 10.1007/s11104-012-1520-0 CrossRefGoogle Scholar
  8. Baggs E, Rees R, Smith K, Vinten A (2000) Nitrous oxide emissions from soils after incorporating crop residues. Soil Use Manag 16:82–87CrossRefGoogle Scholar
  9. Balzan M, Bocci G, Moonen A (2014) Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J Insect Conserv 18:713–728. doi: 10.1007/s10841-014-9680-2 CrossRefGoogle Scholar
  10. Barzman M, Bàrberi P, Birch A, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen J, Kiss J, Kudsk P, Lamichhane J, Messéan A, Moonen A, Ratnadass A, Ricci P, Sarah J, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215. doi: 10.1007/s13593-015-0327-9 CrossRefGoogle Scholar
  11. Bastías RM, Losciale P, Chieco C, Rossi F, Corelli Grappadelli L (2011) Physiological aspects affected by photoselective nets in apples: preliminary studies. Acta Hortic 907:217–220. doi:  10.17660/ActaHortic.2011.907.32
  12. Baumgärtner J, Bieri M (2006) Fruit tree ecosystem service provision and enhancement. Ecol Eng 27:118–123. doi: 10.1016/j.ecoleng.2005.12.005 CrossRefGoogle Scholar
  13. Becerra A, Botta G, Bravo X, Tourn M, Melcon F, Vazquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res 107:49–56. doi: 10.1016/j.still.2010.02.001 CrossRefGoogle Scholar
  14. Beers EH, Suckling DM, Prokopy RJ, Avilla J (2003) Ecology and management of apple arthropod pests. In: Ferree D, Warrington IJ (eds) Apples: botany, production and uses. CAB Intern. CABI, Wallingford, pp 489–519CrossRefGoogle Scholar
  15. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x PubMedCrossRefGoogle Scholar
  16. Bianchi F, Booij C, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Biol Sci 273:1715–1727CrossRefGoogle Scholar
  17. Biddinger D, Hull L (1995) Effects of several types of insecticides on the mite predator, Stethorus punctum (Coleoptera: Coccinellidae), including insect growth regulators and abamectin. J Econ Entomol 88:358–366. doi: 10.1093/jee/88.2.358 CrossRefGoogle Scholar
  18. Biddinger D, Robertson J, Mullin C, Frazier J, Ashcraft S, Rajotte E, Joshi N, Vaughn M (2013) Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One 8:1–6. doi: 10.1371/journal.pone.0072587 CrossRefGoogle Scholar
  19. Boaretto R, Mattos D, Quaggio J, Cantarella H, Trivelin P (2013) Absorption of 15NH3 volatilized from urea by citrus trees. Plant Soil 365:283–290. doi: 10.1007/s11104-012-1380-7 CrossRefGoogle Scholar
  20. Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149. doi: 10.1051/agro:2007052 CrossRefGoogle Scholar
  21. Boller EF, Häni F, Poehling H-M (2004) Ecological infrastructures: Ideabook on functional biodiversity at the farm level. Landwirtschaftliche Beratungszentrale Lindau (LBL), LindauGoogle Scholar
  22. Bommarco R, Kleijn D, Potts S (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. doi: 10.1016/j.tree.2012.10.012 PubMedCrossRefGoogle Scholar
  23. Boreau de Roincé C, Lavigne C, Mandrin J-F, Rollard C, Symondson WOC (2013) Early-season predation on aphids by winter-active spiders in apple orchards revealed by diagnostic PCR. Bull Entomol Res 103:148–154. doi: 10.1017/S0007485312000636 PubMedCrossRefGoogle Scholar
  24. Bot A, Benites J (2005) The importance of soil organic matter. Key to drought-resistant soil and sustained food production. Bull FAO N° 80 89–94.Google Scholar
  25. Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the STICS crop model. Editions QUAE, ParisGoogle Scholar
  26. Brisson N, Mary B, Ripoche D, Jeuffroy M, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Guy R, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet J-M, Meynard J-M, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agron Agric Environ 18:311–346Google Scholar
  27. Brown M, Tworkoski T (2004) Pest management benefits of compost mulch in apple orchards. Agric Ecosyst Environ 103:465–472. doi: 10.1016/j.agee.2003.11.006 CrossRefGoogle Scholar
  28. Brun L, Didelot F, Parisi L (2007) Stratégies de protection innovantes contre la tavelure du pommier : conception, évaluation et intégration en verger. Innov Agron 1:33–45Google Scholar
  29. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B Biol Sci 368:20130122–20130122. doi: 10.1098/rstb.2013.0122 CrossRefGoogle Scholar
  30. Calvet R (2003) Le sol: propriétés et fonctions. France Agricole Editions, ParisGoogle Scholar
  31. Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KHM (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36:1–21. doi: 10.1007/s13593-015-0338-6 CrossRefGoogle Scholar
  32. Cheng L, Raba R (2009) Accumulation of macro- and micronutrient and nitrogen demand-supply relationship of “Gala”/‘Malling 26’ apple trees grown in sand culture. J Am Soc Hortic Sci 1:3–13Google Scholar
  33. CITEPA (2016) Rapport National d’Inventaire pour la France au titre de la Convention cadre des Nations Unies sur les Changements Climatiques et du Protocole de Kyoto (CCNUCC). CITEPA, ParisGoogle Scholar
  34. Codron J, Giraud-Héraud E, Soler L (2005) Minimum quality standards, premium private labels, and European meat and fresh produce retailing. Food Policy 30:270–283. doi: 10.1016/j.foodpol.2005.05.004 CrossRefGoogle Scholar
  35. Costanza R, D’Arge R, de Groot R, Farber S (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  36. Cross J, Fountain M, Marko V, Nagy C (2015) Arthropod ecosystem services in apple orchards and their economic benefits. Ecol Entomol 40:82–96. doi: 10.1111/een.12234 CrossRefGoogle Scholar
  37. Cumming G, Spiesman B (2006) Regional problems need integrated solutions: Pest management and conservation biology in agroecosystems. Biol Conserv 131:533–543. doi: 10.1016/j.biocon.2006.02.025 CrossRefGoogle Scholar
  38. Daily G (1997) Nature’s services. Societal dependence on natural ecosystems. Island Press, Washington DCGoogle Scholar
  39. Dale V, Polasky S (2007) Measures of the effects of agricultural practices on ecosystem services. Ecol Econ 64:286–296. doi: 10.1016/j.ecolecon.2007.05.009 CrossRefGoogle Scholar
  40. Damavandian M (2000) Biology of subterranean populations of woolly apple aphid, Eriosoma Lanigerum (Hausmann) (Homoptera: Aphididae), in apple orchards. PhD. University of Stellenbosch, South AfricaGoogle Scholar
  41. Daudet FA, Lacointe A, Gaudillère JP, Cruiziat P (2002) Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. J Theor Biol 214:481–498. doi: 10.1006/jtbi.2001.2473 PubMedCrossRefGoogle Scholar
  42. de Groot R, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272. doi: 10.1016/j.ecocom.2009.10.006 CrossRefGoogle Scholar
  43. Debras JF, Senoussi R, Dutoit T (2011) Hedgerow effects on the distribution of beneficial arthropods in a pear orchard in southern France. Ecol Mediterr 37:75–83Google Scholar
  44. Dennis F (2003) Flowering, pollination and fruit set and development. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Wallingford, pp 153–166CrossRefGoogle Scholar
  45. Desneux N, Decourtye A, Delpuech J (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. doi: 10.1146/annurev.ento.52.110405.091440 PubMedCrossRefGoogle Scholar
  46. Deurer M, Grinev D, Young I, Clothier B, Müller K (2009) The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand. Eur J Soil Sci 60:945–955. doi: 10.1111/j.1365-2389.2009.01164.x CrossRefGoogle Scholar
  47. Dib H, Simon S, Sauphanor B, Capowiez Y (2010) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis Plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in south-eastern France. Biol Control 55:97–109. doi: 10.1016/j.biocontrol.2010.07.005 CrossRefGoogle Scholar
  48. Didelot F, Brun L, Parisi L (2007) Effects of cultivar mixtures on scab control in apple orchards. Plant Pathol 56:1014–1022. doi: 10.1111/j.1365-3059.2007.01695.x CrossRefGoogle Scholar
  49. Ebel RC, Proebsting EL, Patterson ME (1993) Regulated deficit irrigation may Alter apple maturity, quality, and storage life. Hortscience 28:141–143Google Scholar
  50. Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64:1451–1469. doi: 10.1093/jxb/ert035 PubMedCrossRefGoogle Scholar
  51. European Parliament (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides.Google Scholar
  52. Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem services assessments around European agroforestry. Ecol Indic 62:47–65. doi: 10.1016/j.ecolind.2015.11.016 CrossRefGoogle Scholar
  53. Fallahi E, Khemira H, Righetti TL, Azarenko AN (2002) Influence of foliar application of urea on tree growth, fruit quality, leaf minerals and distribution of urea-drived nitrogen in apples. Acta Hortic 594:603–610CrossRefGoogle Scholar
  54. Fallahi E, Mohan SK (2000) Influence of nitrogen and rootstock on tree growth, precocity, fruit quality, leaf mineral nutrients, and fire blight in “scarlet Gala” apple. HortTechnology 10:589–592Google Scholar
  55. Fereres E, Soriano M (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159. doi: 10.1093/jxb/erl165 PubMedCrossRefGoogle Scholar
  56. Fernández-Escobar R, García-Novelo JM, Molina-Soria C, Parra MA (2012) An approach to nitrogen balance in olive orchards. Sci Hortic (Amsterdam) 135:219–226. doi: 10.1016/j.scienta.2011.11.036 CrossRefGoogle Scholar
  57. Flexner J, Lighthart B, Croft B (1986) The effects of microbial pesticides on non-target, beneficial arthropods. Agric Ecosyst Environ 16:203–254. doi: 10.1016/0167-8809(86)90005-8 CrossRefGoogle Scholar
  58. Floch C, Capowiez Y, Criquet S (2009) Enzyme activities in apple orchard agroecosystems: how are they affected by management strategy and soil properties. Soil Biol Biochem 41:61–68. doi: 10.1016/j.soilbio.2008.09.018 CrossRefGoogle Scholar
  59. Folorunso OA, Rolston DE (1984) Spatial variability of field-measured denitrification gas fluxes. Soil Sci Soc Am J 48:1214–1219. doi: 10.2136/sssaj1984.03615995004800060002x CrossRefGoogle Scholar
  60. Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52:8–16. doi: 10.1016/j.biocontrol.2009.09.011 CrossRefGoogle Scholar
  61. Gallai N, Salles J, Settele J, Vaissière B (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. doi: 10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  62. García-Nieto A, García-Llorente M, Iniesta-Arandia I, Martín-López B (2013) Mapping forest ecosystem services: from providing units to beneficiaries. Ecosyst Serv 4:126–138. doi: 10.1016/j.ecoser.2013.03.003 CrossRefGoogle Scholar
  63. Garcia de Cortazar Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude d’impact du changement climatique à l’échelle de la France. PhD. Ecole Nationale Supérieure Agronomique, MontpellierGoogle Scholar
  64. Garcin A, Bussi C, Corroyer N, Dupont N, Ondet S, Parveaud C (2012) Alternatives au travail du sol sur le rang et gestion du sol en arboriculture. Alter Agri 116:19–21Google Scholar
  65. Garratt MPD, Truslove CL, Coston DJ, Evans RL, Moss ED, Dodson C, Jenner N, Biesmeijer JC, Potts SG (2014) Pollination deficits in UK apple orchards. J Pollinat Ecol 12:9–14Google Scholar
  66. Geiger F, Bengtsson J, Berendse F, Weisser W, Emmerson M, Morales M, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement L, Dennis C, Palmer C, Oñate J, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart P, Inchausti P (2011) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 12:386–387. doi: 10.1016/j.baae.2011.03.004 CrossRefGoogle Scholar
  67. Génard M, Bruchou C (1992) Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci Hortic (Amsterdam) 52:37–51. doi: 10.1016/0304-4238(92)90006-X CrossRefGoogle Scholar
  68. Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008) Carbon allocation in fruit trees: from theory to modelling. Trees-Struct Funct 22:269–282. doi: 10.1007/s00468-007-0176-5 CrossRefGoogle Scholar
  69. Glover JD, Reganold JP, Andrews PK (2000) Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington state. Agric Ecosyst Environ 80:29–45. doi: 10.1016/S0167-8809(00)00131-6 CrossRefGoogle Scholar
  70. Goh K, Ridgen G, Daly M (1995) Understorey biomass production and biological nitrogen fixation in an organic apple orchard in Canterbury, New Zealand. Commun Soil Sci Plant Anal 26:3261–3273CrossRefGoogle Scholar
  71. Gomez C, Brun L, Chauffour D, Vallée D, De Le Vallée D (2007) Effect of leaf litter management on scab development in an organic apple orchard. Agric Ecosyst Environ 118:249–255. doi: 10.1016/j.agee.2006.05.025 CrossRefGoogle Scholar
  72. Gontijo L, Beers E, Snyder W (2013) Flowers promote aphid suppression in apple orchards. Biol Control 66:8–15. doi: 10.1016/j.biocontrol.2013.03.007 CrossRefGoogle Scholar
  73. Grappadelli LC (2003) Light relations. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Wallingford, pp 195–216CrossRefGoogle Scholar
  74. Grechi I, Ould-Sidi M, Hilgert N, Senoussi R, Sauphanor B, Lescourret F (2012) Designing integrated management scenarios using simulation-based and multi-objective optimization: application to the peach tree–Myzus persicae Aphid system. Ecol Model 246:47–59. doi: 10.1016/j.ecolmodel.2012.07.023 CrossRefGoogle Scholar
  75. Grechi I, Sauge M, Sauphanor B, Hilgert N, Senoussi R, Lescourret F (2008) How does winter pruning affect peach tree-Myzus persicae interactions? Entomol Exp Appl 128:369–379. doi: 10.1111/j.1570-7458.2008.00720.x CrossRefGoogle Scholar
  76. Green S, Clothier B (1999) The root zone dynamics of water uptake by a mature apple tree. Plant Soil 206:61–77. doi: 10.1023/A:1004368906698 CrossRefGoogle Scholar
  77. Greenham D (1980) Nutrient cycling: the estimation of orchard nutrient uptake. In: Atkinson D, Jackson JE, Sharples RO, Waller WM (eds) Mineral nutrition of fruit trees. Butterworths, Sevenoaks, pp 345–352CrossRefGoogle Scholar
  78. Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16:2091–2122PubMedCrossRefGoogle Scholar
  79. Grove GG, Eastwell KC, Jones AL, Sutton TB (2003) Diseases of apple. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Wallingford, pp 459–488CrossRefGoogle Scholar
  80. Guilpart N (2014) Relations entre services écosystémiques dans un agroécosystème à base de plantes pérennes : compromis entre rendement de la vigne et régulation de l’oïdium. PhD. Montpellier SupAgroGoogle Scholar
  81. Gutsche V, Rossberg D (1997) SYNOPS 1.1: a model to assess and to compare the environmental risk potential of active ingredients in plant protection products. Agric Ecosyst Environ 64:181–188CrossRefGoogle Scholar
  82. Haines-Young R, Potschin M (2009) Methodologies for defining and assessing ecosystem services. Final Report, JNCC, Proj Code C08–0170-0062 69 pp.Google Scholar
  83. Haines-Young R, Potschin M (2013) Common International Classification of Ecosystem Services (CICES): Consultation on version 4, August–December 2012. EEA Framework contract No EEA/IEA/09/003Google Scholar
  84. Haynes R, Goh K (1980) Distribution and budget of nutrient in a commercial apple orchard. Plant Soil 56:445–457CrossRefGoogle Scholar
  85. Heal G, Small A (2002) Agriculture and its external linkages. In: Gardner B, Rausser G (eds) Handbook of agricultural economics: volume 2A. Elsevier, Amsterdam, pp 1342–1369Google Scholar
  86. Hénault C, Rochette P, Kuikman P, Flénet F, Cellier P (2013) Le protoxyde d’azote (N2O), puissant gaz à effet de serre émis par les sols agricoles: méthodes d’inventaire et leviers de réduction. OCL 20:108–118CrossRefGoogle Scholar
  87. Hoagland L, Carpenter-Boggs L, Granatstein D, Mazzola M, Smith J, Peryea F, Reganold J (2008) Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol Fertil Soils 45:11–18. doi: 10.1007/s00374-008-0304-4 CrossRefGoogle Scholar
  88. IPCC (1995) Climate change 1995. Cambridge University Press, The science of climate changeGoogle Scholar
  89. IPCC (2003) Intergovernmental Panel on Climate Change. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES), HayamaGoogle Scholar
  90. Jackson JE, Palmer JW (1980) A computer model study of light interception by orchards in relation to mechanised harvesting and management. Sci Hortic (Amsterdam) 13:1–7CrossRefGoogle Scholar
  91. Jensen E, Peoples M, Boddey R, Gresshoff P, Henrik H, Alves B, Morrison M (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364. doi: 10.1007/s13593-011-0056-7 CrossRefGoogle Scholar
  92. Keating B, Carberry P, Hammer G, Probert M, Robertson M, Holzworth D, Huth NI, Hargreaves J, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J, Silburn M, Wang E, Brown S, Bristow K, Asseng S, Chapman S, McCown R, Freebairn D, Smith C (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288. doi: 10.1016/S1161-0301(02)00108-9 CrossRefGoogle Scholar
  93. Kelkar S, Dolan K (2012) Modeling the effects of initial nitrogen content and temperature on fermentation kinetics of hard cider. J Food Eng 109:588–596. doi: 10.1016/j.jfoodeng.2011.10.020 CrossRefGoogle Scholar
  94. Kilili A, Behboudian M, Mills T (1996) Composition and quality of “Braeburn” apples under reduced irrigation. Sci Hortic (Amsterdam) 67:1–11. doi: 10.1016/S0304-4238(96)00939-9 CrossRefGoogle Scholar
  95. Klages K, Donnison H, Wünsche J, Boldingh H (2001) Diurnal changes in non-structural carbohydrates in leaves, phloem exudate and fruit in “Braeburn” apple. Funct Plant Biol 28:131–139CrossRefGoogle Scholar
  96. Klein I, Levin I, Assaf R, Berkovitz A (1989) Drip nitrogen fertigation of ’ Starking Delicious ’ apple trees. Plant Soil 119:305–314. doi: 10.1007/BF02370423 CrossRefGoogle Scholar
  97. Koutinas N, Pepelyankov G, Lichev V (2010) Flower induction and flower bud development in apple and sweet cherry. Biotechnol Biotechnol Equip 24:1549–1558. doi: 10.2478/V10133-010-0003-9 CrossRefGoogle Scholar
  98. Kragt ME, Robertson MJ (2014) Quantifying ecosystem services trade-offs from agricultural practices. Ecol Econ 102:147–157. doi: 10.1016/j.ecolecon.2014.04.001 CrossRefGoogle Scholar
  99. Kramer S, Reganold J, Glover J, Bohannan B, Mooney H (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci U S A 103:4522–4527. doi: 10.1073/pnas.0600359103 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kremen C, Williams N, Aizen M, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts S, Roulston T, Steffan-Dewenter I, Vázquez D, Winfree R, Adams L, Crone E, Greenleaf S, Keitt T, Klein A, Regetz J, Ricketts T (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314. doi: 10.1111/j.1461-0248.2007.01018.x PubMedCrossRefGoogle Scholar
  101. Krieger D (2001) The economic value of Forest ecosystem Services : a review. Wilderness Soc:1–31Google Scholar
  102. Ladurner E, Recla L, Wolf M, Zelger R, Burgio G (2004) Osmia cornuta (hymenoptera Megachilidae) densities required for apple pollination : a cage study. J Apic Res 43:118–122. doi: 10.1080/00218839.2004.11101121 CrossRefGoogle Scholar
  103. Lakso A, Wünsche J, Palmer J, Corelli Grappadelli L (1999) Measurement and modeling of carbon balance of the apple tree. Hortscience 34:1040–1047Google Scholar
  104. Lakso AN (2003) Water relations of apples. In: Ferree D, Warrington IJ (eds) Apples: botany, production and uses. CABI, Wallingford, pp 167–194CrossRefGoogle Scholar
  105. Lauri P (2002) From tree architecture to tree training - an overview of recent concepts developed in apple in France. J Korean Soc Hortic Sci 43:782–788Google Scholar
  106. Lescourret F, Blecher N, Habib R, Chadoeuf J, Agostini D, Pailly O, Vaissière B, Poggi I (1999) Development of a simulation model for studying kiwi fruit orchard management. Agric Syst 59:215–239. doi: 10.1016/S0308-521X(99)00006-2 CrossRefGoogle Scholar
  107. Lescourret F, Magda D, Richard G, Adam-Blondon A, Bardy M, Baudry J, Doussan I, Dumont B, Lefèvre F, Litrico I, Martin-Clouaire R, Montuelle B, Pellerin S, Plantegenest M, Tancoigne E, Thomas A, Guyomard H, Soussana J (2015) A social–ecological approach to managing multiple agro-ecosystem services. Curr Opin Environ Sustain 14:68–75. doi: 10.1016/j.cosust.2015.04.001 CrossRefGoogle Scholar
  108. Lescourret F, Moitrier N, Valsesia P, Génard M (2010) QualiTree, a virtual fruit tree to study the management of fruit quality. I Model development Trees 25:519–530. doi: 10.1007/s00468-010-0531-9 Google Scholar
  109. Loewy R, Carvajal L, Novelli M, Pechen de D’Angelo A (2003) Effect of pesticide use in fruit production orchards on shallow ground water. J Environ Sci Heal Part B 38:317–325CrossRefGoogle Scholar
  110. Losey J, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323CrossRefGoogle Scholar
  111. Luyssaert S, Inglima I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze E, Wingate L, Matteucci G (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13:2509–2537. doi: 10.1111/j.1365-2486.2007.01439.x CrossRefGoogle Scholar
  112. Ma L, Hou C, ZHang X, Li H, Han D, Wang Y (2013) Seasonal growth and spatial distribution of apple tree roots on different rootstocks or Interstems. J Am Soc Hortic Sci 138:79–87Google Scholar
  113. MAAF (2014) Enquête pratiques phytosanitaires en arboriculture. Agreste les Dossiers 22:1–17Google Scholar
  114. Maalouly M, Franck P, Bouvier JC, Toubon JF, Lavigne C (2013) Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agric Ecosyst Environ 169:33–42. doi: 10.1016/j.agee.2013.02.008 CrossRefGoogle Scholar
  115. Maalouly M, Franck P, Lavigne C (2015) Temporal dynamics of parasitoid assemblages parasitizing the codling moth. Biol Control 82:31–39. doi: 10.1016/j.biocontrol.2014.11.013 CrossRefGoogle Scholar
  116. Marliac G, Simon S, Mazzia C, Penvern S, Lescourret F, Capowiez Y (2015) Increased grass cover height in the alleys of apple orchards does not promote Cydia pomonella biocontrol. BioControl 60:805–815. doi: 10.1007/s10526-015-9687-y CrossRefGoogle Scholar
  117. Mathieu V, Lavoisier C, Ferre G (2011) L’éclaircissage du pommier. Editions Ctifl, ParisGoogle Scholar
  118. Matson P, Billow C, Hall S, Zachariassen J (1996) Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J Geophys Res 101:533–545. doi: 10.1029/96JD01536 CrossRefGoogle Scholar
  119. Memmah M, Lescourret F, Yao X, Lavigne C (2015) Metaheuristics for agricultural land use optimization. A review. Agron Sustain Dev 35:975–998. doi: 10.1007/s13593-015-0303-4 CrossRefGoogle Scholar
  120. Merwin IA, Stiles WC, van Es HM (1994) Orchard groundcover management impacts on soil physical properties. J Am Soc Hortic Sci 119:216–222Google Scholar
  121. Mills TM, Behboudian MH, Tan PY, Clothier BE (1994) Plant water status and fruit quality in Braeburn’apples. Hortscience 29:1274–1278Google Scholar
  122. Mills WD, LaPlante AA (1951) Diseases and insects in the orchard. Cornell Extension Bulletin, InGoogle Scholar
  123. Miñarro M, Prida E (2013) Hedgerows surrounding organic apple orchards in north-west Spain: potential to conserve beneficial insects. Agric For Entomol 15:382–390. doi: 10.1111/afe.12025 CrossRefGoogle Scholar
  124. Monteiro L, Lavigne C, Ricci B, Frank P, Toubon J, Sauphanor B (2013) Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric Ecosyst Environ 166:86–93. doi: 10.1016/j.agee.2011.10.012 CrossRefGoogle Scholar
  125. Montanaro G, Xiloyannis C, Nuzzo V, Dichio B (2017) Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci Hortic 217:92–101. doi: 10.1016/j.scienta.2017.01.012 CrossRefGoogle Scholar
  126. Mottes C, Lesueur-Jannoyer M, Le Bail M, Malézieux E (2014) Pesticide transfer models in crop and watershed systems: a review. Agron Sustain Dev 34:229–250. doi: 10.1007/s13593-013-0176-3 CrossRefGoogle Scholar
  127. Mpelasoka BS, Behboudian MH, Green SR (2001) Water use, yield and fruit quality of lysimeter-grown apple trees: responses to deficit irrigation and to crop load. Irrig Sci 20:107–113. doi: 10.1007/s002710100041 CrossRefGoogle Scholar
  128. Myrold DD (1990) Measuring denitrification in soils using 15N techniques. In: Revsbech NP, Sørensen J (eds) Denitrification in soil and sediment. Springer US, Boston, MA, pp 181–198CrossRefGoogle Scholar
  129. Naschitz S, Naor A, Genish S, Wolf S, Goldschmidt E (2010) Internal management of non-structural carbohydrate resources in apple leaves and branch wood under a broad range of sink and source manipulations. Tree Physiol 30:715–727. doi: 10.1093/treephys/tpq028 PubMedCrossRefGoogle Scholar
  130. Neilsen D, Neilsen GH (2002) Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 12:19–25Google Scholar
  131. Neilsen GH, Neilsen D (2003) Nutritional requirements of apple. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, Wallingford, pp 267–302CrossRefGoogle Scholar
  132. Neilsen GH, Parchomchuk P, Neilsen D, Zebarth BJ (2000) Drip-fertigation of apple trees affects root distribution and development of K deficiency. Can J Soil Sci 80:353–361CrossRefGoogle Scholar
  133. Nicholls C, Altieri M (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274. doi: 10.1007/s13593-012-0092-y CrossRefGoogle Scholar
  134. Olcott-Reid B, Sutton TB, Unrath C (1981) Evaporative cooling irrigation influences disease, insect, and mite pests of “Delicious” apples. J Am Soc Hortic Sci 106:469–474Google Scholar
  135. Oliveira M, Merwin I (2001) Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant Soil 234:233–237. doi: 10.1023/A:1017992810626 CrossRefGoogle Scholar
  136. Ould-Sidi M, Lescourret F (2011) Model-based design of integrated production systems: a review. Agron Sustain Dev 31:571–588. doi: 10.1007/s13593-011-0002-8 CrossRefGoogle Scholar
  137. Page G, Kelly T, Minor M, Cameron E (2011) Modeling carbon footprints of organic orchard production systems to address carbon trading: an approach based on life cycle assessment. Hortscience 46:324–327Google Scholar
  138. Palmer JW, Avery DJ, Wertheim SJ (1992) Effect of apple tree spacing and summer pruning on leaf area distribution and light interception. Sci Hortic (Amsterdam) 52:303–312. doi: 10.1016/0304-4238(92)90031-7 CrossRefGoogle Scholar
  139. Parisi L, Lespinasse Y, Guillaume J, Krüger J, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf Gene. Phytopathology 83:533–537. doi: 10.1094/Phyto-83-533 CrossRefGoogle Scholar
  140. Parolin P, Bresch C, Desneux N, Brun R, Bout A, Boll R, Poncet C (2012) Secondary plants used in biological control: a review. Int J Pest Manag 58:91–100. doi: 10.1080/09670874.2012.659229 CrossRefGoogle Scholar
  141. Peck G, Andrews P, Reganold J, Fellman J (2006) Apple orchard productivity and fruit quality under organic, conventional, and integrated management. Hortscience 41:99–107Google Scholar
  142. Pekár S (1999) Effect of IPM practices and conventional spraying on spider population dynamics in an apple orchard. Agric Ecosyst Environ 73:155–166. doi: 10.1016/S0167-8809(99)00024-9 CrossRefGoogle Scholar
  143. Pfiffner L, Scharer H, Luka H (2013) Functional biodiversity to improve pest control in organic cropping systems. In: Korean organic conference, 25th October. Suwon, Korea,Google Scholar
  144. Pistocchi A, Bouraoui F, Bittelli M (2008) A simplified parameterization of the monthly topsoil water budget. Water Resour Res 44:0. doi: 10.1029/2007WR006603
  145. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B Biol Sci 365:2959–2971. doi: 10.1098/rstb.2010.0143 CrossRefGoogle Scholar
  146. Quiñones A, Martínez-Alcántara B, Legaz F (2007) Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agric Ecosyst Environ 122:399–409. doi: 10.1016/j.agee.2007.02.004 CrossRefGoogle Scholar
  147. Racskó J (2006) Crop load, fruit thinning and their effects on fruit quality of apple ( Malus domestica Borkh.) J Agric Sci 24:29–35Google Scholar
  148. Raese J (1998) Response of apple and pear trees to nitrogen, phosphorus, and potassium fertilizers. J Plant Nutr 21:2671–2696. doi: 10.1080/01904169809365597 CrossRefGoogle Scholar
  149. Rapidel B, Ripoche A, Allinne C, Metay A, Deheuvels O, Lamanda N, Blazy J-M, Valdés-Gómez H, Gary C (2015) Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agron Sustain Dev 35:0. doi: 10.1007/s13593-015-0317-y
  150. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303. doi: 10.1007/s13593-011-0022-4 CrossRefGoogle Scholar
  151. Reganold JP, Glover JD, Andrews PK, Hinman HR (2001) Sustainability of three apple production systems. Nature 410:926–930. doi: 10.1038/nature05188 PubMedCrossRefGoogle Scholar
  152. Reid W, Mooney H, Cropper A, Capistrano D, Carpentier S, Chopra K, Dasgupta P, Dietz T, Duraiappah A, Hassan R, Kasperson R, Leemans R, May R, McMichael A, Pingali P, Samper C, Scholes R, Watson R, Zakri A, Shidong Z, Ash N, Bennett J, Kumar P, Lee M, Raudsepp-Hearne C, Simons H, Thonell J, Zurek N (2005) Ecosystems and human well-being: synthesis. Millenium ecosystem assessment. Island Press, Washington DCGoogle Scholar
  153. Ricard J, Garcin A, Jay M, Mandrin J (2012) Biodiversité et régulation des ravageurs en arboriculture fruitière. Editions Ctifl, ParisGoogle Scholar
  154. Ricketts T, Regetz S-DI, Cunningham S, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf S, Klein A, Mayfield M, Morandin L, Ochieng A, Viana B (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515. doi: 10.1111/j.1461-0248.2008.01157.x PubMedCrossRefGoogle Scholar
  155. Ricou C, Schneller C, Amiaud B, Plantureux S, Bockstaller C (2014) A vegetation-based indicator to assess the pollination value of field margin flora. Ecol Indic 45:320–331. doi: 10.1016/j.ecolind.2014.03.022 CrossRefGoogle Scholar
  156. Riga P, Charpentier S (1999) Simulation of nitrogen dynamics in an alluvial sandy soil with drip fertigation of apple trees. Soil Use Manag 15:34–40. doi: 10.1111/j.1475-2743.1999.tb00061.x CrossRefGoogle Scholar
  157. Ripoche A, Rellier J, Martin-Clouaire R, Paré N, Biarnès A, Gary C (2011) Modelling adaptive management of intercropping in vineyards to satisfy agronomic and environmental performances under Mediterranean climate. Environ Model Softw 26:1467–1480. doi: 10.1016/j.envsoft.2011.08.003 CrossRefGoogle Scholar
  158. Robinson DW, O’Kennedy ND (1978) The effect of the overall herbicide systems of soil management on the growth and yield of apple trees “golden Delicious.”. Sci Hortic (Amsterdam) 9:127–136CrossRefGoogle Scholar
  159. Robinson T, Lakso A, Ren Z (1991) Modifying apple tree canopies for improved production efficiency. Hortscience 26:1005–1012Google Scholar
  160. Robinson T, Wünsche J, Lakso A (1993) The influence of orchards system and pruning severity on yield, light interception, conversion efficiency, partitioning index and leaf area index. Acta Hortic 349:123–128. Doi: 10.17660/ActaHortic.1993.349.17
  161. Rodríguez-Entrena M, Barreiro-Hurlé J, Gómez-Limón J, Espinosa-Goded M, Castro-Rodríguez J (2012) Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change. J Environ Manag 112:368–376. doi: 10.1016/j.jenvman.2012.08.004 CrossRefGoogle Scholar
  162. Rodríguez J, Beard T, Bennett E, Cumming G, Cork S, Agard J, Dobson A, Peterson G (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11:28CrossRefGoogle Scholar
  163. Rosa García R, Miñarro M (2014) Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agric Ecosyst Environ 183:118–126. doi: 10.1016/j.agee.2013.10.017 CrossRefGoogle Scholar
  164. Sagoff M (2011) The quantification and valuation of ecosystem services. Ecol Econ 70:497–502. doi: 10.1016/j.ecolecon.2010.10.006 CrossRefGoogle Scholar
  165. Sandhu HS, Wratten SD, Cullen R (2010) Organic agriculture and ecosystem services. Environ Sci Pol 13:1–7. doi: 10.1016/j.envsci.2009.11.002 CrossRefGoogle Scholar
  166. Sandhu HS, Wratten SD, Cullen R, Case B (2008) The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol Econ 64:835–848. doi: 10.1016/j.ecolecon.2007.05.007 CrossRefGoogle Scholar
  167. Saure M (1990) External control of anthocyanin formation in apple. Sci Hortic (Amsterdam) 42:181–218. doi: 10.1016/0304-4238(90)90082-P CrossRefGoogle Scholar
  168. Schäckermann J, Pufal G, Mandelik Y, Klein A (2015) Agro-ecosystem services and dis-services in almond orchards are differentially influenced by the surrounding landscape. Ecol Entomol 40:12–21. doi: 10.1111/een.12244 CrossRefGoogle Scholar
  169. Schellhorn NA, Parry HR, Macfadyen S, Wang Y, Zalucki MP (2015) Connecting scales: achieving in-field pest control from areawide and landscape ecology studies. Insect Sci 22:35–51. doi: 10.1111/1744-7917.12161 PubMedCrossRefGoogle Scholar
  170. Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, Kemanian AR, Mortensen DA, Ryan MR, Tooker J, White C (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22. doi: 10.1016/j.agsy.2013.11.004 CrossRefGoogle Scholar
  171. Schmid A, Weibel F (2000) Das sandwich system – ein Verfahren zur herbizidfreien Baumstreifenbewirtschaftung? [the sandwich system, a procedure for herbicide free in-row weed control?]. Obstbau 25:214–217Google Scholar
  172. Simon S, Bouvier J, Debras J, Sauphanor B (2010) Biodiversity and pest management in orchard systems. A review. Agron Sustain Dev 30:139–152. doi: 10.1051/agro/2009013 CrossRefGoogle Scholar
  173. Simon S, Lauri P-EP, Brun L, Defrance H, Sauphanor B (2006) Does fruit-tree architecture manipulation affect the development of pests and pathogens? J Hortic Sci Biotechnol 81:765–773CrossRefGoogle Scholar
  174. Simon S, Morel K, Durand E, Brevalle G, Girard T, Lauri P (2012) Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees-Struct Funct 26:273–282. doi: 10.1007/s00468-011-0629-8 CrossRefGoogle Scholar
  175. Six J, Freyn SD, Thietn RK, Batten K (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555. doi: 10.2136/sssaj2004.0347 CrossRefGoogle Scholar
  176. Sofo A, Nuzzo V, Palese A, Xiloyannis C, Celano G, Zukowskyj P, Dichio B (2005) Net CO2 storage in mediterranean olive and peach orchards. Sci Hortic (Amsterdam) 107:17–24. doi: 10.1016/j.scienta.2005.06.001 CrossRefGoogle Scholar
  177. Sokalska DI, Haman DZ, Szewczuk A, Sobota J, Deren D (2009) Spatial root distribution of mature apple trees under drip irrigation system. Agric Water Manag 96:917–924. doi: 10.1016/j.agwat.2008.12.003 CrossRefGoogle Scholar
  178. Song B, Wu H, Kong Y, Zhang J, Du Y, Hu J, Yao Y (2010) Effects of intercropping with aromatic plants on the diversity and structure of an arthropod community in a pear orchard. BioControl 55:741–751. doi: 10.1007/s10526-010-9301-2 CrossRefGoogle Scholar
  179. Souty M, Génard M, Reich M, Albagnac G (1999) Effect of assimilate supply on peach fruit maturation and quality. Can J Plant Sci 79:259–268CrossRefGoogle Scholar
  180. Stern RA, Eisikowitch D, Dag A (2001) Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in “red Delicious” apple. J Hortic Sci Biotechnol 76:17–23CrossRefGoogle Scholar
  181. Stopar M, Bolcina U, Vanzo A, Vrhovsek U (2002) Lower crop load for cv. Jonagold apples (Malus x domestica Borkh.) increases polyphenol content and fruit quality. J Agric Food Chem 50:1643–1646. doi: 10.1021/jf011018b PubMedCrossRefGoogle Scholar
  182. Strullu L, Beaudoin N, de Cortàzar Atauri IG, Mary B (2014) Simulation of biomass and nitrogen dynamics in perennial organs and shoots of Miscanthus × Giganteus using the STICS model. BioEnergy Res 7:1253–1269. doi: 10.1007/s12155-014-9462-4 CrossRefGoogle Scholar
  183. Susfalk RB, Johnson DW (2002) Ion exchange resin based soil solution lysimeters and snowmelt solution collectors. Commun Soil Sci Plant Anal 33:1261–1275. doi: 10.1081/CSS-120003886 CrossRefGoogle Scholar
  184. Sykes SR (2008) The effect on Citrus fruit of excluding pollinating insects at flowering and implications for breeding new seedless cultivars. J Hortic Sci Biotechnol 83:713–718. doi: 10.1080/14620316.2008.11512449 CrossRefGoogle Scholar
  185. Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agric Ecosyst Environ 189:28–35. doi: 10.1016/j.agee.2014.03.006 CrossRefGoogle Scholar
  186. Tagliavini M, Scudellazi D, Marangoni B, Toselli M (1996) Nitrogen fertilization management in orchards to reconcile productivity and environmental aspects. Fertil Res 43:93–102. doi: 10.1007/BF00747687 CrossRefGoogle Scholar
  187. Tagliavini M, Tonon G, Scandellari F, Quiñones A, Palmieri S, Menarbin G, Gioacchini P, Masia A (2007) Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric Ecosyst Environ 118:191–200. doi: 10.1016/j.agee.2006.05.018 CrossRefGoogle Scholar
  188. Taylor JA, Praat JP, Bollen AF (2007) Spatial variability of kiwifruit quality in orchards and its implications for sampling and mapping. Hortscience 42:246–250Google Scholar
  189. Teravest D, Smith J, Carpenter-Boggs L, Granatstein D, Hoagland L, Reganold J (2011) Soil carbon pools, nitrogen supply, and tree performance under several groundcovers and compost rates in a newly planted apple orchard. Hortscience 46:1687–1694Google Scholar
  190. Thiel A, Schleyer C, Plieninger T (2012) Wolves are mobile, while fruit trees are not! How characteristics of resources and supranational regulatory frameworks shape the provision of biodiversity and ecosystem Services in Germany. Environ Policy Gov 22:189–204. doi: 10.1002/eet.1578 CrossRefGoogle Scholar
  191. Thies C (1999) Landscape structure and biological control in agroecosystems. Science (80- ) 285:893–895. doi: 10.1126/science.285.5429.893
  192. Thompson H (2003) Behavioural effects of pesticides in bees -their potential for use in risk assessment. Ecotoxicology 12:317–330PubMedCrossRefGoogle Scholar
  193. Toselli M, Flore J, Zavalloni C, Marangoni B (2000) Nitrogen partitioning in apple trees as affected by application time. HortTechnology 10:136–141Google Scholar
  194. Tribouillois H, Cohan J-P, Justes E (2016) Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant Soil 401:347–364. doi: 10.1007/s11104-015-2734-8 CrossRefGoogle Scholar
  195. Tsonkova P, Quinkenstein A, Böhm C, Freese D, Schaller E (2014) Ecosystem services assessment tool for agroforestry (ESAT-A): an approach to assess selected ecosystem services provided by alley cropping systems. Ecol Indic 45:285–299. doi: 10.1016/j.ecolind.2014.04.024 CrossRefGoogle Scholar
  196. Vaissière B, Morison N, Crété X, Ferré G, Matti M, Vilain J (2000) Incidence des filets paragrêle sur les abeilles et la pollinisation des pommiers. Arboric Fruitière 544:19–25Google Scholar
  197. van Oudenhoven A, Petz K, Alkemade R, Hein L, de Groot R (2012) Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol Indic 21:110–122. doi: 10.1016/j.ecolind.2012.01.012 CrossRefGoogle Scholar
  198. Vasseur C, Joannon A, Aviron S, Burel F, Meynard J, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14. doi: 10.1016/j.agee.2011.10.012 CrossRefGoogle Scholar
  199. Volz R, Tustin D, Ferguson I (1996) Pollination effects on fruit mineral composition, seeds and cropping characteristics of “Braeburn” apple trees. Sci Hortic (Amsterdam) 66:169–180. doi: 10.1016/S0304-4238(96)00934-X CrossRefGoogle Scholar
  200. Wallace K (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246. doi: 10.1016/j.biocon.2007.07.015 CrossRefGoogle Scholar
  201. White R (2006) Principles and practices of soil science: the soil as a natural resource - 4th Edition. Blackwell PublishingGoogle Scholar
  202. Willaume M, Lauri P, Sinoquet H (2004) Light interception in apple trees influenced by canopy architecture manipulation. Trees - Struct Funct 18:705–713. doi: 10.1007/s00468-004-0357-4 CrossRefGoogle Scholar
  203. Wu T, Wang Y, Yu C, Chiarawipa R, Zhang X, Han Z, Wu L (2012) Carbon sequestration by fruit trees - chinese apple orchards as an example. PLoS One 7:e38883. doi: 10.1371/journal.pone.0038883 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Wünsche J, Lakso A, Robinson T, Lenz F, Denning S (1996) The bases of productivity in apple production systems: the role of light interception by different shoot types. J Am Soc Hortic Sci 121:886–893Google Scholar
  205. Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75:43–49. doi: 10.1111/j.1570-7458.1995.tb01908.x CrossRefGoogle Scholar
  206. Xia G, Cheng L, Lakso A, Goffinet M (2009) Effects of nitrogen supply on source-sink balance and fruit size of “Gala” apple trees. J Am Soc Hortic Sci 134:126–133Google Scholar
  207. Zanotelli D, Montagnani L, Manca G, Scandellari F, Tagliavini M (2015) Net ecosystem carbon balance of an apple orchard. Eur J Agron 63:97–104. doi: 10.1016/j.eja.2014.12.002 CrossRefGoogle Scholar
  208. Zanotelli D, Montagnani L, Manca G, Tagliavini M (2013) Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements. Biogeosciences 10:3089–3108. doi: 10.5194/bg-10-3089-2013 CrossRefGoogle Scholar
  209. Zhang W, Ricketts T, Kremen C, Carney K, Swinton S (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260. doi: 10.1016/j.ecolecon.2007.02.024 CrossRefGoogle Scholar
  210. Zhu X, Burger M, Doane T, Horwath W (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. PNAS 110:6328–6333. doi: 10.1073/pnas.1219993110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1219993110 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Zibordi M, Domingos S, Corelli Grappadelli L (2009) Thinning apples via shading: an appraisal under field conditions. J Hortic Sci Biotechnol 84:138–144. doi: 10.1080/14620316.2009.11512611 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  1. 1.PSH, INRAAvignonFrance
  2. 2.CTIFL, Centre de Saint-RémySaint-Rémy de ProvenceFrance
  3. 3.CTIFL, Centre de LanxadePrigonrieuxFrance

Personalised recommendations